Change blindness


Change blindness is a perceptual phenomenon that occurs when a change in a visual stimulus is introduced and the observer does not notice it. For example, observers often fail to notice major differences introduced into an image while it flickers off and on again. People's poor ability to detect changes has been argued to reflect fundamental limitations of human attention. Change blindness has become a highly researched topic and some have argued that it may have important practical implications in areas such as eyewitness testimony and distractions while driving.

History

Early anecdotal observations

Outside of the domain of psychology, phenomena related to change blindness have been discussed since the 19th century. When film editing was introduced in movies, editors began to notice that changes to the background were not noticed by those watching the film. Going back earlier, William James was the first to mention the lack of ability to detect change in his book Principles of Psychology.

Earliest experimental reports

Research on change blindness developed from investigation in other phenomena such as eye movements and working memory. Although individuals have a very good memory as to whether or not they have seen an image, they are generally poor at recalling the smaller details in that image. When we are visually stimulated with a complex picture, it is more likely that individuals retain only a gist of an image and not the image in its entirety.
The laboratory study of change blindness began in the 1970s within the context of eye movement research. George McConkie conducted the first studies on change blindness involving changes in words and texts; in these studies, the changes were introduced while the observer performed a saccadic eye movement. Observers often failed to notice these changes.
In the late 1980s, the first clear experimental demonstration was published showing very poor change detection in complex displays over brief intervals without eye movements being involved. showed that observers were poor at detecting changes introduced into arrays of letters while the display was flickered off and on, even if the offset was as brief as 67 milliseconds. Pashler concluded by noting how odd it was that people generally report having a "clear sense of apprehending the identities and locations of large numbers of objects in a scene", and that given this introspective sense, it seemed quite surprising how poor is their detection of changes.

Research in the 1990s and 2000s

With the rise of the ability to present complex, real-world images on a computer screen, McConkie, in the early 1990s, as part of new research at the new Beckman Institute for Advanced Science and Technology, renewed investigations of why the world looks stable and continuous despite the shifting retinal input signal that accompanied each saccade. This research began when John Grimes and Dr. George McConkie began to use actual photographs to study visual stability. This development in change blindness research was able to show the effects of change blindness in more realistic settings. Additionally, further research stated that rather large changes will not be detected when they occur during saccadic movements of the eye. In the first experiment of this kind, in 1995, Blackmore et al. forced saccades by moving the image and making a change in the scene at the same time. Observers' ability to detect the changes fell to chance. The effect was stronger using this method than when using brief grey flashes between images, although subsequent research has mostly used grey flashes or masking stimuli. Another finding based on similar studies stated that a change was easily picked up on by participants when the eye was fixated on the point of change. Therefore, the eye must be directly fixated on the area of change for it to be noticed. This was called the saccade target theory of transsaccadic memory of visual stability. However, other research in the mid-1990s has indicated that individuals still have difficulty detecting change even when they are directly fixated on a particular scene. Rensink, O'Regan, and Clarke presented a picture, followed by a blank, masking screen, followed by the initial picture with a change. The masking screen acts like a saccadic eye movement. This was a critical contribution to change blindness research because it demonstrated that a change can remain unnoticed with the smallest disruptions.
Research on change blindness proceeded one step further into practical applications of this phenomenon. For example, there does not have to be a masking stimulus in order for individuals to miss a change in a scene. Individuals often take significantly longer to notice certain changes if there are a few small, high contrast shapes that are temporarily splattered over a picture. This method for testing change blindness is called "mudsplashes". This method is particularly relevant to individuals driving in a car when there is a visual obstruction on the windshield. This obstruction may impair an individual's ability to detect a change in their environment which could result in severe negative consequences while driving.

Current research (2010–present)

Change detection

Research indicates that detecting changes in a change blindness task is easier when items are holistically processed, such as faces. Individuals notice a change faster when required to detect changes in facial features than when required to detect changes in images of houses. However, individuals are better at identifying the nature of the change in houses.
Other researchers have discovered that mental processing in change blindness begins even before the change is presented. More specifically, there is increased brain activity in the parietal-occipital and occipital regions prior to the emergence of a change in a change blindness task.
Researchers have also indicated there is a difference in brain activity between detecting a change and identifying change in an image. Detecting a change is associated with a higher ERP whereas identifying change is associated with an increased ERP before and after the change was presented.
Additional research using fluctuations in ERPs has observed that changes in pictures are represented in the brain, even without the perceiver's conscious awareness of the change.
Change blindness can be effectively used in the process of visualizing actual changes detected in 3D scenes. With appropriate techniques it is possible to enhance the perception of the portion of a 3D scene that is changed while hiding non significant, but otherwise still visible, changes.

Lucid dreaming

occurs when one realizes that the events experienced within a dream are bizarre or would not occur in one's waking life. As such, the inability to notice the bizarre nature of the dream has been coined as an example of change blindness, also known as individuals who are non-lucid dreamers. However, a recent study found that lucid dreamers did not perform better on a change blindness task than non-lucid dreamers. Therefore, the relation between lucid dreamers and change blindness has been discredited to some degree.

In teams

Another interesting area of research is the decreased susceptibility to change blindness when individuals are placed in teams. Although change blindness is still observed within teams, research has indicated that changes between images are noticed more when individuals work in teams as opposed to individually. Both teamwork and communication assist teams in correctly identifying changes between images.

Expertise

Another recent study looked at the relation between expertise and change blindness. Physics experts were more likely to notice a change between two physics problems than novices. It is hypothesized that experts are better at analyzing problems on a deeper level whereas novices employ a surface-level analysis. This research suggests that observing the phenomenon of change blindness may be conditional upon the context of the task.

Choice blindness

Cognitive psychologists expanded the study of change blindness into decision-making. In one study, they showed participants ten pairs of faces and asked them to choose which face was more attractive. For some pairs, the experimenter used sleight of hand to show participants a face they had not chosen. Only 26% of subjects noticed the mismatch between their choice of face and the different face they were shown instead. The experimenters tested pairs of faces that were either high in similarity or low in similarity, but the detection rate was no different between those conditions. Subjects were also asked to give reasons why they had chosen a face. Despite the mismatch, subjects gave responses that were comparable in emotionality, specificity, and certainty for faces they had or had not actually chosen. Further research has shown that the failure to detect mismatches between intention and outcome exists in consumer product choices and in political attitudes.

Counteraction

Prior research in the early part of the decade had shown that change blindness can be counteracted by a number of methods. Shifting attention with a visual cue can help lower the negative effects of change blindness. Stimulation of the superior colliculus improves performance and reaction time in the same way. However, recent research has also been done on countering tactile change blindness. A 2016 study by Riggs et al. shows that three successful methods for limiting tactile change blindness in distinguishing changes in vibration patterns are attention guidance, signal gradation and direct comparison. All three methods seek to bring attention to the area of change. Attention guidance works proactively by increasing the frequency of a cue. The second and third methods are reactive and based on error-feedback. Signal gradation further increases the intensity of the vibration after the change has been missed. Direct comparison pairs the pre-change and post-change vibration intensities without a gap in between after a change has been missed to support the use of relative judgment rather than absolute. While all significantly improve performance, the second and third countermeasures are most effective. Concentration and attention are also a major factors in avoiding change blindness.