Textile industry
The textile industry is primarily concerned with the design, production and distribution of textiles: yarn, cloth and clothing.
Industry process
Cotton manufacturing
is the world's most important natural fibre. In the year 2007, the global yield was 25 million tons from 35 million hectares cultivated in more than 50 countries.There are five stages of cotton manufacturing:
- Cultivating and harvesting
- Preparatory processes
- Spinning — giving yarn
- Weaving — giving fabrics
- Finishing — giving textiles
Synthetic fibres
can be made by extruding a polymer, through a spinneret into a medium where it hardens. Wet spinning uses a coagulating medium. In dry spinning, the polymer is contained in a solvent that evaporates in the heated exit chamber. In melt spinning the extruded polymer is cooled in gas or air and then sets. Some examples of synthetic fibres are polyester, rayon, acrylic fibres and microfibres. All these fibres will be of great length, often kilometres long. Synthetic fibres are more durable than most natural fibres and will readily pick-up different dyes. Artificial fibres can be processed as long fibres or batched and cut so they can be processed like natural fibre.Natural fibres
Sheep, goats, rabbits, silkworms, and other animals, as well as minerals like asbestos, are sources of natural fibres. These vegetable fibres can originate from the seed, the stem, or the leaf. All of these sources require a number of steps, each of which has a distinct name, before a clean, even staple is produced. All of these fibres, with the exception of silk, are short, only a few centimetres long, and have a rough surface that allows them to adhere to other like staple fibres.History
Cottage stage
There are some indications that weaving was already known in the Palaeolithic. An indistinct textile impression has been found at Pavlov, Moravia. Neolithic textiles were found in pile dwellings excavations in Switzerland and at El Fayum, Egypt at a site which dates to about 5000 BC.In Roman times, wool, linen and leather clothed the European population, and silk, imported along the Silk Road from China, was an extravagant luxury. The use of flax fibre in the manufacturing of cloth in Northern Europe dates back to Neolithic times.
During the late medieval period, cotton began to be imported into Northern Europe. Without any knowledge of what it came from, other than that it was a plant, noting its similarities to wool, people in the region could only imagine that cotton must be produced by plant-borne sheep. John Mandeville, writing in 1350, stated as fact the now-preposterous belief: "There grew in India a wonderful tree which bore tiny lambs on the edges of its branches. These branches were so pliable that they bent down to allow the lambs to feed when they are hungry." This aspect is retained in the name for cotton in many European languages, such as German Baumwolle, which translates as "tree wool". By the end of the 16th century, cotton was cultivated throughout the warmer regions of Asia and the Americas.
The main steps in the production of cloth are producing the fibre, preparing it, converting it to yarn, converting yarn to cloth, and then finishing the cloth. The cloth is then taken to the manufacturer of garments. The preparation of the fibres differs the most, depending on the fibre used. Flax requires retting and dressing, while wool requires carding and washing. The spinning and weaving processes are very similar between fibres, however.
Spinning evolved from twisting the fibres by hand, to using a drop spindle, to using a spinning wheel. Spindles or parts of them have been found in archaeological sites and may represent one of the first pieces of technology available. The spinning wheel was most likely invented in the Islamic world by the 11th century.
Industrial Revolution
The woven fabric portion of the textile industry grew out of the Industrial Revolution in the 18th century as mass production of yarn and cloth became a mainstream industry.In 1734 in Bury, Lancashire John Kay invented the flying shuttle — one of the first of a series of inventions associated with the cotton woven fabric industry. The flying shuttle increased the width of cotton cloth and speed of production of a single weaver at a loom. Resistance by workers to the perceived threat to jobs delayed the widespread introduction of this technology, even though the higher rate of production generated an increased demand for spun cotton.
In 1761, the Duke of Bridgewater's canal connected Manchester to the coal fields of Worsley and in 1762, Matthew Boulton opened the Soho Foundry engineering works in Handsworth, Birmingham. His partnership with Scottish engineer James Watt resulted, in 1775, in the commercial production of the more efficient Watt steam engine which used a separate condenser.
In 1764, James Hargreaves is credited as inventor of the spinning jenny which multiplied the spun thread production capacity of a single worker — initially eightfold and subsequently much further. Others credit the invention to Thomas Highs. Industrial unrest and a failure to patent the invention until 1770 forced Hargreaves from Blackburn, but his lack of protection of the idea allowed the concept to be exploited by others. As a result, there were more than 20,000 spinning jennies in use by the time of his death. Also in 1764, Thorp Mill, the first water-powered cotton mill in the world was constructed at Royton, Lancashire, and was used for carding cotton. With the spinning and weaving process now mechanised, cotton mills cropped up all over the North West of England.
The stocking frame invented in 1589 for silk became viable when in 1759, Jedediah Strutt introduced an attachment for the frame which produced what became known as the Derby Rib, that produced a knit and purl stitch. This allowed stockings to be manufactured in silk and later in cotton. In 1768, Hammond modified the stocking frame to weave weft-knitted openworks or nets by crossing over the loops, using a mobile tickler bar – this led in 1781 to Thomas Frost's square net. Cotton had been too coarse for lace, but by 1805 Houldsworths of Manchester were producing reliable 300 count cotton thread.
19th-century developments
With the Cartwright Loom, the Spinning Mule and the Boulton & Watt steam engine, the pieces were in place to build a mechanised woven fabric textile industry. From this point there were no new inventions, but a continuous improvement in technology as the mill-owner strove to reduce cost and improve quality. Developments in the transport infrastructure; that is the canals and after 1831 the railways facilitated the import of raw materials and export of finished cloth.Firstly, the use of water power to drive mills was supplemented by steam driven water pumps, and then superseded completely by the steam engines. For example, Samuel Greg joined his uncle's firm of textile merchants, and, on taking over the company in 1782, he sought out a site to establish a mill.Quarry Bank Mill was built on the River Bollin at Styal in Cheshire. It was initially powered by a water wheel, but installed steam engines in 1810. Quarry Bank Mill in Cheshire still exists as a well-preserved museum, having been in use from its construction in 1784 until 1959. It also illustrates how the mill owners exploited child labour, taking orphans from nearby Manchester to work the cotton. It shows that these children were housed, clothed, fed and provided with some education. In 1830, the average power of a mill engine was 48 hp, but Quarry Bank mill installed a new 100 hp water wheel. William Fairbairn addressed the problem of line-shafting and was responsible for improving the efficiency of the mill. In 1815 he replaced the wooden turning shafts that drove the machines at 50rpm, to wrought iron shafting working at 250 rpm, these were a third of the weight of the previous ones and absorbed less power.
Secondly, in 1830, using an 1822 patent, Richard Roberts manufactured the first loom with a cast iron frame, the Roberts Loom. In 1842 James Bullough and William Kenworthy, made the Lancashire Loom, a semiautomatic power loom: although it is self-acting, it has to be stopped to recharge empty shuttles. It was the mainstay of the Lancashire cotton industry for a century, until the Northrop Loom gained ascendancy.
Thirdly, also in 1830, Richard Roberts patented the first self-acting mule. Stalybridge mule spinners strike was in 1824; this stimulated research into the problem of applying power to the winding stroke of the mule. The draw while spinning had been assisted by power, but the push of the wind had been done manually by the spinner, the mule could be operated by semiskilled labor. Before 1830, the spinner would operate a partially powered mule with a maximum of 400 spindles; after, self-acting mules with up to 1300 spindles could be built.
| Year | 1803 | 1820 | 1829 | 1833 | 1857 |
| Looms | 2400 | 14650 | 55500 | 100000 | 250000 |
The Industrial Revolution changed the nature of work and society The three key drivers in these changes were textile manufacturing, iron founding and steam power. The geographical focus of textile manufacture in Britain was Manchester and the small towns of the Pennines and southern Lancashire.
Textile production in England peaked in 1926, and as mills were decommissioned, many of the scrapped mules and looms were bought up and reinstated in India.
Women began entering the workforce in the 19th century through textile factories, the industrial and garment assembly jobs done during this time " point for participation by rural women in the formal economy". While women began entering the workforce and earning wages for themselves, there was an assumption that the earned wages were ones that should "supplement the family income rather than provide it", which was typically done by that of the breadwinning father or husband. It was commonly acknowledged that the role of a woman as a textile worker was a "secondary occupation and that a woman's real work was raising children and running the household". This socially accepted convention was illustrated in the hiring process of female textile workers, employers preferred "hiring women who were young and unmarried: most machine operatives were between the ages of 16 and 25". This also affected the wage of female textile workers, since it was considered that a women's wage in the textile industry was one to supplement the family, there was a "belief that women did not merit or require wages as high as those of men".