Oganesson


Oganesson is a synthetic chemical element; it has symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research in Dubna, near Moscow, Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name honors the nuclear physicist Yuri Oganessian, who played a leading role in the discovery of the heaviest elements in the periodic table.
Oganesson has the highest atomic number and highest atomic mass of all known elements. On the periodic table of the elements it is a p-block element, a member of group 18, and the last member of period 7. Its only known isotope, oganesson-294, is highly radioactive, with a half-life of 0.7 ms. This half-life is too short for chemical studies. Because of relativistic effects, theoretical studies predict that it would be a solid at room temperature, and significantly reactive, unlike the other members of group 18.

Introduction

History

Early speculation

The possibility of a seventh noble gas, after helium, neon, argon, krypton, xenon, and radon, was considered almost as soon as the noble gas group was discovered. Danish chemist Hans Peter Jørgen Julius Thomsen predicted in April 1895, the year after the discovery of argon, that there was a whole series of chemically inert gases similar to argon that would bridge the halogen and alkali metal groups: he expected that the seventh of this series would end a 32-element period which contained thorium and uranium and have an atomic weight of 292, close to the 294 now known for the first and only confirmed isotope of oganesson. Danish physicist Niels Bohr noted in 1922 that this seventh noble gas should have atomic number 118 and predicted its electronic structure as 2, 8, 18, 32, 32, 18, 8, matching modern predictions. Following this, German chemist Aristid von Grosse wrote an article in 1965 predicting the likely properties of element 118. It was 107 years from Thomsen's prediction before oganesson was successfully synthesized, although its chemical properties have not been investigated to determine if it behaves as the heavier congener of radon. In a 1975 article, American chemist Kenneth Pitzer suggested that element 118 should be a gas or volatile liquid due to relativistic effects.

Unconfirmed discovery claims

In late 1998, Polish physicist Robert Smolańczuk published calculations on the fusion of atomic nuclei towards the synthesis of superheavy atoms, including oganesson. His calculations suggested that it might be possible to make element 118 by fusing lead with krypton under carefully controlled conditions, and that the fusion probability of that reaction would be close to the lead–chromium reaction that had produced element 106, seaborgium. This contradicted predictions that the cross sections for reactions with lead or bismuth targets would go down exponentially as the atomic number of the resulting elements increased.
In 1999, researchers at Lawrence Berkeley National Laboratory made use of these predictions and announced the discovery of elements 118 and 116, in a paper published in Physical Review Letters, and very soon after the results were reported in Science. The researchers reported that they had performed the reaction
In 2001, they published a retraction after researchers at other laboratories were unable to duplicate the results and the Berkeley lab could not duplicate them either. In June 2002, the director of the lab announced that the original claim of the discovery of these two elements had been based on data fabricated by principal author Victor Ninov. Newer experimental results and theoretical predictions have confirmed the exponential decrease in cross sections with lead and bismuth targets as the atomic number of the resulting nuclide increases.

Discovery reports

The first genuine decay of atoms of oganesson was observed in 2002 at the Joint Institute for Nuclear Research in Dubna, Russia, by a joint team of Russian and American scientists. Headed by Yuri Oganessian, a Russian nuclear physicist of Armenian ethnicity, the team included American scientists from the Lawrence Livermore National Laboratory in California. The discovery was not announced immediately, because the decay energy of 294Og matched that of 212mPo, a common impurity produced in fusion reactions aimed at producing superheavy elements, and thus announcement was delayed until after a 2005 confirmatory experiment aimed at producing more oganesson atoms. The 2005 experiment used a different beam energy and target thickness. On 9 October 2006, the researchers announced that they had indirectly detected a total of three nuclei of oganesson-294 produced via collisions of californium-249 atoms and calcium-48 ions.
In 2011, IUPAC evaluated the 2006 results of the Dubna–Livermore collaboration and concluded: "The three events reported for the Z = 118 isotope have very good internal
redundancy but with no anchor to known nuclei do not satisfy the criteria for discovery".
Because of the very small fusion reaction probability the experiment took four months and involved a beam dose of calcium ions that had to be shot at the californium target to produce the first recorded event believed to be the synthesis of oganesson. Nevertheless, researchers were highly confident that the results were not a false positive, since the chance that the detections were random events was estimated to be less than one part in.
In the experiments, the alpha-decay of three atoms of oganesson was observed. A fourth decay by direct spontaneous fission was also proposed. A half-life of 0.89 ms was calculated: decays into by alpha decay. Since there were only three nuclei, the half-life derived from observed lifetimes has a large uncertainty:.
The identification of the nuclei was verified by separately creating the putative daughter nucleus directly by means of a bombardment of with ions,
and checking that the decay matched the decay chain of the nuclei. The daughter nucleus is very unstable, decaying with a lifetime of 14 milliseconds into, which may experience either spontaneous fission or alpha decay into, which will undergo spontaneous fission.

Confirmation

In December 2015, the Joint Working Party of international scientific bodies International Union of Pure and Applied Chemistry and International Union of Pure and Applied Physics recognized the element's discovery and assigned the priority of the discovery to the Dubna–Livermore collaboration. This was on account of two 2009 and 2010 confirmations of the properties of the granddaughter of 294Og, 286Fl, at the Lawrence Berkeley National Laboratory, as well as the observation of another consistent decay chain of 294Og by the Dubna group in 2012. The goal of that experiment had been the synthesis of 294Ts via the reaction 249Bk, but the short half-life of 249Bk resulted in a significant quantity of the target having decayed to 249Cf, resulting in the synthesis of oganesson instead of tennessine.
From 1 October 2015 to 6 April 2016, the Dubna team performed a similar experiment with 48Ca projectiles aimed at a mixed-isotope californium target containing 249Cf, 250Cf, and 251Cf, with the aim of producing the heavier oganesson isotopes 295Og and 296Og. Two beam energies at 252 MeV and 258 MeV were used. Only one atom was seen at the lower beam energy, whose decay chain fitted the previously known one of 294Og, and none were seen at the higher beam energy. The experiment was then halted, as the glue from the sector frames covered the target and blocked evaporation residues from escaping to the detectors. The production of 293Og and its daughter 289Lv, as well as the even heavier isotope 297Og, is also possible using this reaction. The isotopes 295Og and 296Og may also be produced in the fusion of 248Cm with 50Ti projectiles. These heavier and likely more stable isotopes may be useful in probing the chemistry of oganesson. A search in 2017 at RIKEN using this reaction was unsuccessful.

Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, oganesson is sometimes known as eka-radon. In 1979, IUPAC assigned the systematic placeholder name ununoctium to the undiscovered element, with the corresponding symbol of Uuo, and recommended that it be used until after confirmed discovery of the element. Although widely used in the chemical community on all levels, from chemistry classrooms to advanced textbooks, the recommendations were mostly ignored among scientists in the field, who called it "element 118", with the symbol of E118, , or simply 118.
Before the retraction in 2001, the researchers from Berkeley had intended to name the element ghiorsium, after Albert Ghiorso.
The Russian discoverers reported their synthesis in 2006. According to IUPAC recommendations, the discoverers of a new element have the right to suggest a name. In 2007, the head of the Russian institute stated the team were considering two names for the new element: flyorium, in honor of Georgy Flyorov, the founder of the research laboratory in Dubna; and moskovium, in recognition of the Moscow Oblast where Dubna is located. He also stated that although the element was discovered as an American collaboration, who provided the californium target, the element should rightly be named in honor of Russia since the Flyorov Laboratory of Nuclear Reactions at JINR was the only facility in the world which could achieve this result. These names were later suggested for element 114 and element 116. Flerovium became the name of element 114; the final name proposed for element 116 was instead livermorium, with moscovium later being proposed and accepted for element 115 instead.
Traditionally, the names of all noble gases end in "-on", with the exception of helium, which was not known to be a noble gas when discovered. The IUPAC guidelines valid at the moment of the discovery approval however required all new elements be named with the ending "-ium", even if they turned out to be halogens or noble gases. While the provisional name ununoctium followed this convention, a new IUPAC recommendation published in 2016 recommended using the "-on" ending for new group 18 elements, regardless of whether they turn out to have the chemical properties of a noble gas.
The scientists involved in the discovery of element 118, as well as those of 117 and 115, held a conference call on 23 March 2016 to decide their names. Element 118 was the last to be decided upon; after Oganessian was asked to leave the call, the remaining scientists unanimously decided to have the element "oganesson" after him. Oganessian was a pioneer in superheavy element research for sixty years reaching back to the field's foundation: his team and his proposed techniques had led directly to the synthesis of elements 107 through 118. Mark Stoyer, a nuclear chemist at the LLNL, later recalled, "We had intended to propose that name from Livermore, and things kind of got proposed at the same time from multiple places. I don't know if we can claim that we actually proposed the name, but we had intended it."
In internal discussions, IUPAC asked the JINR if they wanted the element to be spelled "oganeson" to match the Russian spelling more closely. Oganessian and the JINR refused this offer, citing the Soviet-era practice of transliterating names into the Latin alphabet under the rules of the French language and arguing that "oganesson" would be easier to link to the person.
In June 2016, IUPAC announced that the discoverers planned to give the element the name oganesson. The name became official on 28 November 2016. In 2017, Oganessian commented on the naming:
The naming ceremony for moscovium, tennessine, and oganesson was held on 2 March 2017 at the Russian Academy of Sciences in Moscow.
In a 2019 interview, when asked what it was like to see his name in the periodic table next to Einstein, Mendeleev, the Curies, and Rutherford, Oganessian responded: