Void (astronomy)
Cosmic voids are vast spaces between filaments, which contain very few or no galaxies. In spite of their size, most galaxies are not located in voids but are gravitationally bound together, creating huge cosmic structures known as galaxy filaments. The cosmological evolution of the void regions differs drastically from the evolution of the universe as a whole: there is a long stage when the curvature term dominates, which prevents the formation of galaxy clusters and massive galaxies. Hence, although even the emptiest regions of voids contain more than ~15% of the average matter density of the universe, the voids look almost empty to an observer.
Voids typically have a diameter of 10 to 100 megaparsecs ; particularly large voids, defined by the absence of rich superclusters, are sometimes called supervoids. They were first discovered in 1978 in a pioneering study by Stephen Gregory and Laird A. Thompson at the Kitt Peak National Observatory.
Voids are believed to have been formed by baryon acoustic oscillations in the Big Bang, collapses of mass followed by implosions of the compressed baryonic matter. Starting from initially small anisotropies from quantum fluctuations in the early universe, the anisotropies grew larger in scale over time. Regions of higher density collapsed more rapidly under gravity, eventually resulting in the large-scale, foam-like structure or "cosmic web" of voids and galaxy filaments seen today. Voids located in high-density environments are smaller than voids situated in low-density spaces of the universe.
Voids appear to correlate with the observed temperature of the cosmic microwave background because of the Sachs–Wolfe effect. Colder regions correlate with voids, and hotter regions correlate with filaments because of gravitational redshifting. As the Sachs–Wolfe effect is only significant if the universe is dominated by radiation or dark energy, the existence of voids is significant in providing physical evidence for dark energy.
Large-scale structure
The structure of the Universe can be broken down into components that can help describe the characteristics of individual regions of the cosmos. These are the main structural components of the cosmic web:- Voids – vast, largely spherical regions with very low cosmic mean densities, up to 100 megaparsecs in diameter.
- Walls – the regions that contain the typical cosmic mean density of matter abundance. Walls can be further broken down into two smaller structural features:
- * Clusters – highly concentrated zones where walls meet and intersect, adding to the effective size of the local wall.
- * Filaments – the branching arms of walls that can stretch for tens of megaparsecs.
Discovery
Study of cosmic voids within the discipline of astrophysics began in the mid-1970s when redshift surveys led two separate teams of astrophysicists in 1978 to identify superclusters and voids in the distribution of galaxies and Abell clusters. The new redshift surveys revolutionized the field of astronomy by adding depth to the two-dimensional maps of cosmological structure, which were often densely packed and overlapping, allowing for the first three-dimensional mapping of the universe. Through redshift surveys, their depth was calculated from the individual redshifts of the galaxies due to the expansion of the universe according to Hubble's law.Timeline
A summarized timeline of important events in the field of cosmic voids from its beginning to recent times is as follows:- 1961 – Large-scale structural features such as "second-order clusters", a specific type of supercluster, were brought to the astronomical community's attention.
- 1978 – The first two papers on the topic of voids in the large-scale structure were published referencing voids found in the foreground of the Coma/A1367 clusters.
- 1981 – Discovery of a large void in the Boötes region of the sky that was nearly 50 h−1 Mpc in diameter. Here h is the dimensionless Hubble parameter, approximately 0.7.
- 1983 – Computer simulations sophisticated enough to provide relatively reliable results of growth and evolution of the large-scale structure emerged and yielded insight on key features of the large-scale galaxy distribution.
- 1985 – Details of the supercluster and void structure of the Perseus–Pisces region were surveyed.
- 1989 – The Center for Astrophysics Redshift Survey revealed that large voids, sharp filaments, and the walls that surround them dominate the large-scale structure of the universe.
- 1991 – The Las Campanas Redshift Survey confirmed the abundance of voids in the large-scale structure of the universe.
- 1995 – Comparisons of optically selected galaxy surveys indicate that the same voids are found regardless of the sample selection.
- 2001 – The completed two-degree Field Galaxy Redshift Survey adds a significantly large amount of voids to the database of all known cosmic voids.
- 2009 – The Sloan Digital Sky Survey data combined with previous large-scale surveys now provide the most complete view of the detailed structure of cosmic voids.
Methods for finding