Stream gauge
A stream gauge, streamgage or stream gauging station is a location used by hydrologists or environmental scientists to monitor and test terrestrial bodies of water. Hydrometric measurements of water level surface elevation and/or volumetric discharge are generally taken and observations of biota and water quality may also be made. The locations of gauging stations are often found on topographical maps. Some gauging stations are highly automated and may include telemetry capability transmitted to a central data logging facility.
Measurement equipment
Automated direct measurement of stream discharge is difficult at present. Mathematically, measuring stream discharge is estimating the volumetric flow rate, which is in general a flux integral and thus requires many cross-sectional velocity measurements. In place of the direct measurement of stream discharge, one or more surrogate measurements can be used as proxy variables to produce discharge values. In the majority of cases, a stage measurement is used as the surrogate. Low gradient streams are highly influenced by variable downstream channel conditions. For these streams, a second stream gauge would be installed, and the slope of the water surface would be calculated between the gauges. This value would be used along with the stage measurement to more accurately determine the streamflow discharge. Improvements in the accuracy of velocity sensors have also allowed the use of water velocity as a reliable surrogate for streamflow discharge at sites with a stable cross-sectional area. These sensors are permanently mounted in the stream and measure velocity at a particular location in the stream.In those instances where only a stage measurement is used as the surrogate, a rating curve must be constructed. A rating curve is the functional relation between stage and discharge. It is determined by making repeated discrete measurements of streamflow discharge using a velocimeter and some means to measure the channel geometry to determine the cross-sectional area of the channel. The technicians and hydrologists responsible for determining the rating curve visit the site routinely, with special trips to measure the hydrologic extremes, and make a discharge measurement by following an explicit set of instructions or standard operating procedures.
Image:HueyCreekAntarctica2001.jpg|thumb|December 12, 2001 photo of the USGS streamflow-gaging station at Huey Creek, McMurdo Dry Valleys, Antarctica.
Once the rating curve is established, it can be used in conjunction with stage measurements to determine the volumetric streamflow discharge. This record then serves as an assessment of the volume of water that passes by the stream gauge and is useful for many tasks associated with hydrology.
In those instances where a velocity measurement is additionally used as a surrogate, an index velocity determination is conducted. This analysis uses a velocity sensor, often either magnetic or acoustic, to measure the velocity of the flow at a particular location in the stream cross section. Once again, discrete measurements of streamflow discharge are made by the technician or hydrologist at a variety of stages. For each discrete determination of streamflow discharge, the mean velocity of the cross section is determined by dividing streamflow discharge by the cross-sectional area. A rating curve, similar to that used for stage-discharge determinations, is constructed using the mean velocity and the index velocity from the permanently mounted meter. An additional rating curve is constructed that relates stage of the stream to cross-sectional area. Using these two ratings, the automatically collected stage produces an estimate of the cross-sectional area, and the automatically collected index velocity produces an estimate of the mean velocity of the cross section. The streamflow discharge is computed as the product of the estimate of the cross section area and the estimate of the mean velocity of the streamflow.
Image:B62doddieburn.jpg|thumb|Stream gauge B62, a combination weir at Doddieburn, on the Mzingwane River, Zimbabwe
A variety of hydraulic structures / primary device are used to improve the reliability of using water level as a surrogate for flow, including:
- Weirs
- *V-notch,
- * broad-crested,
- * sharp-crested and
- * combination weirs
- Flumes
- *Parshall flume
- Cableways - for suspending a hydrographer and current meter over a river to make high flow measurement
- Stilling well - to provide a calm water level that can be measured by a sensor
- Staff gauges - for a visual indication of water depth
- Water pressure measuring device - to measure water level via pressure
- Stage encoder - a potentiometer with a wheel and pulley system connected to a float in a stilling well to provide an electronic reading of the water level
- Simple ultrasonic devices - to measure water level in a stilling well or directly in a canal.
- Electromagnetic gauges
National stream gauge networks
United Kingdom
England
The first routine measurements of river flow in England began on the Thames and Lea in the 1880s, The Environment Agency is responsible for collection and analysis of hydrometric data in England. The national gauging station network was established in its current form by the early 1970s and consists of approximately 1500 flow measurement stations supplemented by a variable number of temporary monitoring sites.Scotland
The first routine measurements of river flow in Scotland on the River Garry in 1913. The Scottish Environment Protection Agency is responsible for collection and analysis of hydrometric data in Scotland.Wales
is responsible for collection and analysis of hydrometric data in Wales.Northern Ireland
The Rivers Agency is responsible for collection and analysis of hydrometric data in Northern Ireland.United States
In the United States, the U.S. Geological Survey is the principal federal agency tasked with maintaining records of stream flow data. Within the USGS, the Water Resources Division carries the responsibility for monitoring water resources.To establish a stream gauge, USGS personnel first choose a site on a stream where the geometry is relatively stable and there is a suitable location to make discrete direct measurements of streamflow using specialized equipment. Many times this will be at a bridge or other stream crossing. Technicians then install equipment that measures the stage or, more rarely, the velocity of the flow. Additional equipment is installed to record and transmit these readings to the Water Science Center office where the records are kept. The USGS has a Water Science Center office in every state within the United States. Current streamflow data from USGS streamgages may be viewed in map form at: .
Zimbabwe
In Zimbabwe, the national stream gauge network is the responsibility of the Zimbabwe National Water Authority. This is an extensive network covering all major rivers and catchments in the country. However, a review of existing gauges raised serious concerns about the reliability of the data of a minority of stations, due in part to ongoing funding problems.Bangladesh
The largest stream gauge network in Bangladesh is maintained by Bangladesh Water Development Board. At few other locations, Bangladesh Inland Water Transport Authority maintains a few gauges to provide advisories for navigational purposes.File:Choceň, vodočet pod Masarykovým mostem.jpg|thumb|upright|Emergency levels I, II and III at Tichá Orlice river in Choceň, Czech Republic