Flow measurement
Flow measurement is the quantification of bulk fluid movement. Flow can be measured using devices called flowmeters in various ways. The common types of flowmeters with industrial applications are listed below:
- Obstruction type
- Inferential
- Electromagnetic
- Positive-displacement flowmeters, which accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow.
- Fluid dynamic
- Anemometer
- Ultrasonic flow meter
- Mass flow meter.
Kinds and units of measurement
Both gas and liquid flow can be measured in physical quantities of kind volumetric flow rate or mass flow rates, with respective SI units such as cubic meters per second or kilograms per second, respectively. These measurements are related by the material's density. The density of a liquid is almost independent of conditions. This is not the case for gases, the densities of which depend greatly upon pressure, temperature and to a lesser extent, composition.When gases or liquids are transferred for their energy content, as in the sale of natural gas, the flow rate may also be expressed in terms of energy flow, such as gigajoule per hour or BTU per day. The energy flow rate is the volumetric flow rate multiplied by the energy content per unit volume or mass flow rate multiplied by the energy content per unit mass. Energy flow rate is usually derived from mass or volumetric flow rate by the use of a flow computer.
In engineering contexts, the volumetric flow rate is usually given the symbol, and the mass flow rate, the symbol.
For a fluid having density, mass and volumetric flow rates may be related by.
Gas
Gases are compressible and change volume when placed under pressure, are heated or are cooled. A volume of gas under one set of pressure and temperature conditions is not equivalent to the same gas under different conditions. References will be made to "actual" flow rate through a meter and "standard" or "base" flow rate through a meter with units such as acm/h, sm3/sec, kscm/h, LFM, or MMSCFD.Gas mass flow rate can be directly measured, independent of pressure and temperature effects, with ultrasonic flow meters, thermal mass flowmeters, Coriolis mass flowmeters, or mass flow controllers.
Liquid
For liquids, various units are used depending upon the application and industry, but might include gallons per minute, liters per second, liters per m2 per hour, bushels per minute or, when describing river flows, cumecs or acre-feet per day. In oceanography a common unit to measure volume transport is a sverdrup equivalent to 106 m3/s.Primary flow element
A primary flow element is a device inserted into the flowing fluid that produces a physical property that can be accurately related to flow. For example, an orifice plate produces a pressure drop that is a function of the square of the volume rate of flow through the orifice. A vortex meter primary flow element produces a series of oscillations of pressure. Generally, the physical property generated by the primary flow element is more convenient to measure than the flow itself. The properties of the primary flow element, and the fidelity of the practical installation to the assumptions made in calibration, are critical factors in the accuracy of the flow measurement.Mechanical flowmeters
A positive displacement meter may be compared to a bucket and a stopwatch. The stopwatch is started when the flow starts and stopped when the bucket reaches its limit. The volume divided by the time gives the flow rate. For continuous measurements, we need a system of continually filling and emptying buckets to divide the flow without letting it out of the pipe. These continuously forming and collapsing volumetric displacements may take the form of pistons reciprocating in cylinders, gear teeth mating against the internal wall of a meter or through a progressive cavity created by rotating oval gears or a helical screw.Piston meter/rotary piston
Because they are used for domestic water measurement, piston meters, also known as rotary piston or semi-positive displacement meters, are the most common flow measurement devices in the UK and are used for almost all meter sizes up to and including 40 mm. The piston meter operates on the principle of a piston rotating within a chamber of known volume. For each rotation, an amount of water passes through the piston chamber. Through a gear mechanism and, sometimes, a magnetic drive, a needle dial and odometer type display are advanced.Oval gear meter
An oval gear meter is a positive displacement meter that uses two or more oblong gears configured to rotate at right angles to one another, forming a T shape. Such a meter has two sides, which can be called A and B. No fluid passes through the center of the meter, where the teeth of the two gears always mesh. On one side of the meter, the teeth of the gears close off the fluid flow because the elongated gear on side A is protruding into the measurement chamber, while on the other side of the meter, a cavity holds a fixed volume of fluid in a measurement chamber. As the fluid pushes the gears, it rotates them, allowing the fluid in the measurement chamber on side B to be released into the outlet port. Meanwhile, fluid entering the inlet port will be driven into the measurement chamber of side A, which is now open. The teeth on side B will now close off the fluid from entering side B. This cycle continues as the gears rotate and fluid is metered through alternating measurement chambers. Permanent magnets in the rotating gears can transmit a signal to an electric reed switch or current transducer for flow measurement. Though claims for high performance are made, they are generally not as precise as the sliding vane design.Gear meter
Gear meters differ from oval gear meters in that the measurement chambers are made up of the gaps between the teeth of the gears. These openings divide up the fluid stream and as the gears rotate away from the inlet port, the meter's inner wall closes off the chamber to hold the fixed amount of fluid. The outlet port is located in the area where the gears are coming back together. The fluid is forced out of the meter as the gear teeth mesh and reduce the available pockets to nearly zero volume.Helical gear
Helical gear flowmeters get their name from the shape of their gears or rotors. These rotors resemble the shape of a helix, which is a spiral-shaped structure. As the fluid flows through the meter, it enters the compartments in the rotors, causing the rotors to rotate. The length of the rotor is sufficient that the inlet and outlet are always separated from each other thus blocking a free flow of liquid. The mating helical rotors create a progressive cavity which opens to admit fluid, seals itself off and then opens up to the downstream side to release the fluid. This happens in a continuous fashion and the flowrate is calculated from the speed of rotation.Nutating disk meter
This is the most commonly used measurement system for measuring water supply in houses. The fluid, most commonly water, enters in one side of the meter and strikes the nutating disk, which is eccentrically mounted. The disk must then "wobble" or nutate about the vertical axis, since the bottom and the top of the disk remain in contact with the mounting chamber. A partition separates the inlet and outlet chambers. As the disk nutates, it gives direct indication of the volume of the liquid that has passed through the meter as volumetric flow is indicated by a gearing and register arrangement, which is connected to the disk. It is reliable for flow measurements within 1 percent.Turbine flowmeter
The turbine flowmeter translates the mechanical action of the turbine rotating in the liquid flow around an axis into a user-readable rate of flow. The turbine tends to have all the flow traveling around it.The turbine wheel is set in the path of a fluid stream. The flowing fluid impinges on the turbine blades, imparting a force to the blade surface and setting the rotor in motion. When a steady rotation speed has been reached, the speed is proportional to fluid velocity.
Turbine flowmeters are used for the measurement of natural gas and liquid flow. Turbine meters are less accurate than displacement and jet meters at low flow rates, but the measuring element does not occupy or severely restrict the entire path of flow. The flow direction is generally straight through the meter, allowing for higher flow rates and less pressure loss than displacement-type meters. They are the meter of choice for large commercial users, fire protection, and as master meters for the water distribution system. Strainers are generally required to be installed in front of the meter to protect the measuring element from gravel or other debris that could enter the water distribution system. Turbine meters are generally available for 4 to 30 cm or higher pipe sizes. Turbine meter bodies are commonly made of stainless steel, bronze, cast Iron, or ductile iron. Internal turbine elements can be plastic or non-corrosive metal alloys. They are accurate in normal working conditions but are greatly affected by the flow profile and fluid conditions.
Turbine flowmeters are commonly best suited for low viscosity, as large particulate can damage the rotor. When choosing a meter for an application that requires particulate flowing through the pipe, it is best to use a meter without moving parts such as a Magnetic flowmeters.
Fire meters are a specialized type of turbine meter with approvals for the high flow rates required in fire protection systems. They are often approved by Underwriters Laboratories or Factory Mutual or similar authorities for use in fire protection. Portable turbine meters may be temporarily installed to measure water used from a fire hydrant. The meters are normally made of aluminum to be lightweight, and are usually 7.5 cm capacity. Water utilities often require them for measurement of water used in construction, pool filling, or where a permanent meter is not yet installed.