Electrical discharge machining
Electrical discharge machining, also known as spark machining, spark eroding, die sinking, wire burning or wire erosion, is a metal
fabrication process whereby a desired shape is obtained by using electrical discharges. Material is removed from the work piece by a series of rapidly recurring current discharges between two electrodes, separated by a dielectric liquid and subject to an electric voltage. One of the electrodes is called the tool-electrode, while the other is called the workpiece-electrode, or. The process depends upon the tool and work piece not making physical contact. Extremely hard materials like carbides, ceramics, titanium alloys and heat treated tool steels that are very difficult to machine using conventional machining can be precisely machined by EDM.
When the voltage between the two electrodes is increased, the intensity of the electric field in the volume between the electrodes becomes greater, causing dielectric break down of the liquid, and produces an electric arc. As a result, material is removed from the electrodes. Once the current stops, new liquid dielectric is conveyed into the inter-electrode volume, enabling the solid particles to be carried away and the insulating properties of the dielectric to be restored. Adding new liquid dielectric in the inter-electrode volume is commonly referred to as. After a current flow, the voltage between the electrodes is restored to what it was before the breakdown, so that a new liquid dielectric breakdown can occur to repeat the cycle.
History
The erosive effect of electrical discharges was first noted in 1770 by English physicist Joseph Priestley.Die-sink EDM
Two Soviet scientists, B. R. Lazarenko and N. I. Lazarenko, were tasked in 1943 to investigate ways of preventing the erosion of tungsten electrical contacts due to sparking. They failed in this task but found that the erosion was more precisely controlled if the electrodes were immersed in a dielectric fluid. This led them to invent an EDM machine used for working difficult-to-machine materials such as tungsten. The Lazarenkos' machine is known as an R-C-type machine, after the resistor–capacitor circuit used to charge the electrodes.Simultaneously, but independently, an American team, Harold Stark, Victor Harding, and Jack Beaver, developed an EDM machine for removing broken drills and taps from aluminium castings. Initially constructing their machines from under-powered electric-etching tools, they were not very successful. But more powerful sparking units, combined with automatic spark repetition and fluid replacement with an electromagnetic interrupter arrangement produced practical machines. Stark, Harding, and Beaver's machines produced 60 sparks per second. Later machines based on their design used vacuum tube circuits that produced thousands of sparks per second, significantly increasing the speed of cutting.
Wire-cut EDM
The wire-cut type of machine arose in the 1960s for making tools from hardened steel. The tool electrode in wire EDM is simply a wire. To avoid the erosion of the wire causing it to break, the wire is wound between two spools so that the active part of the wire is constantly changing. The earliest numerical controlled machines were conversions of punched-tape vertical milling machines. The first commercially available NC machine built as a wire-cut EDM machine was manufactured in the USSR in 1967. Machines that could optically follow lines on a master drawing were developed by David H. Dulebohn's group in the 1960s at Andrew Engineering Company for milling and grinding machines. Master drawings were later produced by computer numerical controlled plotters for greater accuracy. A wire-cut EDM machine using the CNC drawing plotter and optical line follower techniques was produced in 1974. Dulebohn later used the same plotter CNC program to directly control the EDM machine, and the first CNC EDM machine was produced in 1976.Commercial wire EDM capability and use has advanced substantially during recent decades. Feed rates have increased and surface finish can be finely controlled.
Generalities
Electrical discharge machining is a machining method primarily used for hard metals or those that would be very difficult to machine with traditional techniques. EDM typically works with materials that are electrically conductive, although methods have also been proposed for using EDM to machine insulating ceramics. EDM can cut intricate contours or cavities in pre-hardened steel without the need for heat treatment to soften and re-harden them. This method can be used with any other metal or metal alloy such as titanium, Hastelloy, kovar, and inconel. Also, applications of this process to shape polycrystalline diamond tools have been reported.EDM is often included in the "non-traditional" or "non-conventional" group of machining methods together with processes such as electrochemical machining, water jet cutting, laser cutting, and opposite to the "conventional" group.
Ideally, EDM can be seen as a series of breakdown and restoration of the liquid dielectric in-between the electrodes. However, caution should be exerted in considering such a statement because it is an idealized model of the process, introduced to describe the fundamental ideas underlying the process. Yet, any practical application involves many aspects that may also need to be considered. For instance, the removal of the debris from the inter-electrode volume is likely to be always partial. Thus the electrical properties of the dielectric in the inter-electrodes volume can be different from their nominal values and can even vary with time. The inter-electrode distance, often also referred to as spark-gap, is the result of the control algorithms of the specific machine used. The control of such a distance appears logically to be central to this process. Also, not all of the current between the dielectric is of the ideal type described above: the spark-gap can be short-circuited by the debris. The control system of the electrode may fail to react quickly enough to prevent the two electrodes from coming into contact, with a consequent short circuit. This is unwanted because a short circuit contributes to material removal differently from the ideal case. The flushing action can be inadequate to restore the insulating properties of the dielectric so that the current always happens in the point of the inter-electrode volume, with a consequent unwanted change of shape of the tool-electrode and workpiece. Ultimately, a description of this process in a suitable way for the specific purpose at hand is what makes the EDM area such a rich field for further investigation and research.
To obtain a specific geometry, the EDM tool is guided along the desired path very close to the work; ideally it should not touch the workpiece, although in reality this may happen due to the performance of the specific motion control in use. In this way, a large number of current discharges happen, each contributing to the removal of material from both tool and workpiece, where small craters are formed. The size of the craters is a function of the technological parameters set for the specific job at hand. They can be with typical dimensions ranging from the nanoscale to some hundreds of micrometers in roughing conditions.
The presence of these small craters on the tool results in the gradual erosion of the electrode. This erosion of the tool-electrode is also referred to as wear. Strategies are needed to counteract the detrimental effect of the wear on the geometry of the workpiece. One possibility is that of continuously replacing the tool-electrode during a machining operation. This is what happens if a continuously replaced wire is used as electrode. In this case, the correspondent EDM process is also called wire EDM. The tool-electrode can also be used in such a way that only a small portion of it is actually engaged in the machining process and this portion is changed on a regular basis. This is, for instance, the case when using a rotating disk as a tool-electrode. The corresponding process is often also referred to as EDM grinding.
A further strategy consists in using a set of electrodes with different sizes and shapes during the same EDM operation. This is often referred to as multiple electrode strategy, and is most common when the tool electrode replicates in negative the wanted shape and is advanced towards the blank along a single direction, usually the vertical direction. This resembles the sink of the tool into the dielectric liquid in which the workpiece is immersed, so it is often referred to as die-sinking EDM. The corresponding machines are often called sinker EDM. Usually, the electrodes of this type have quite complex forms. If the final geometry is obtained using a usually simple-shaped electrode which is moved along several directions and is possibly also subject to rotations, often the term EDM milling is used.
In any case, the severity of the wear is strictly dependent on the technological parameters used in the operation. For example, in micro-EDM, also known as μ-EDM, these parameters are usually set at values which generates severe wear. Therefore, wear is a major problem in that area.
The problem of wear to graphite electrodes is being addressed. In one approach, a digital generator, controllable within milliseconds, reverses polarity as electro-erosion takes place. That produces an effect similar to electroplating that continuously deposits the eroded graphite back on the electrode. In another method, a so-called "Zero Wear" circuit reduces how often the discharge starts and stops, keeping it on for as long a time as possible.
Definition of the technological parameters
Difficulties have been encountered in the definition of the technological parameters that drive the process.Two broad categories of generators, also known as power supplies, are in use on EDM machines commercially available: the group based on RC circuits and the group based on transistor-controlled pulses.
In both categories, the primary parameters at setup are the current and frequency delivered. In RC circuits, however, little control is expected over the time duration of the discharge, which is likely to depend on the actual spark-gap conditions at the moment of the discharge. Also, the open circuit voltage can be identified as steady state voltage of the RC circuit.
In generators based on transistor control, the user is usually able to deliver a train of pulses of voltage to the electrodes. Each pulse can be controlled in shape, for instance, quasi-rectangular. In particular, the time between two consecutive pulses and the duration of each pulse can be set. The amplitude of each pulse constitutes the open circuit voltage. Thus, the maximum duration of discharge is equal to the duration of a pulse of voltage in the train. Two pulses of current are then expected not to occur for a duration equal or larger than the time interval between two consecutive pulses of voltage.
The maximum current during a discharge that the generator delivers can also be controlled. Because other sorts of generators may also be used by different machine builders, the parameters that may actually be set on a particular machine will depend on the generator manufacturer. The details of the generators and control systems on their machines are not always easily available to their user. This is a barrier to describing unequivocally the technological parameters of the EDM process. Moreover, the parameters affecting the phenomena occurring between tool and electrode are also related to the controller of the motion of the electrodes.
A framework to define and measure the electrical parameters during an EDM operation directly on inter-electrode volume with an oscilloscope external to the machine has been recently proposed by Ferri et al. These authors conducted their research in the field of μ-EDM, but the same approach can be used in any EDM operation. This would enable the user to estimate directly the electrical parameters that affect their operations without relying upon machine manufacturer's claims. When machining different materials in the same setup conditions, the actual electrical parameters of the process are significantly different.