Soliton


In mathematics and physics, a soliton is a nonlinear, self-reinforcing, localized wave packet that is, in that it preserves its shape while propagating freely, at constant velocity, and recovers it even after collisions with other such localized wave packets. Its remarkable stability can be traced to a balanced cancellation of nonlinear and dispersive effects in the medium. Solitons were subsequently found to provide stable solutions of a wide class of weakly nonlinear dispersive partial differential equations describing physical systems.
The soliton phenomenon was first described in 1826 by Giorgio Bidone, though this was largely overlooked by researchers in Britain. It was next described in 1834 by John Scott Russell who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation". The Korteweg–de Vries equation was later formulated to model such waves, and the term "soliton" was coined by Norman Zabusky and Martin David Kruskal to describe localized, strongly stable propagating solutions to this equation. The name was meant to characterize the solitary nature of the waves, with the "on" suffix recalling the usage for particles such as electrons, baryons or hadrons, reflecting their observed particle-like behaviour.

Definition

A single, consensus definition of a soliton is difficult to find. ascribe three properties to solitons:
  1. They are of permanent form;
  2. They are localized within a region;
  3. They can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.
More formal definitions exist, but they require substantial mathematics. Moreover, some scientists use the term soliton for phenomena that do not quite have these three properties.

Explanation

and nonlinearity can interact to produce permanent and localized wave forms. Consider a pulse of light traveling in glass. This pulse can be thought of as consisting of light of several different frequencies. Since glass shows dispersion, these different frequencies travel at different speeds and the shape of the pulse therefore changes over time. However, also the nonlinear Kerr effect occurs; the refractive index of a material at a given frequency depends on the light's amplitude or strength. If the pulse has just the right shape, the Kerr effect exactly cancels the dispersion effect and the pulse's shape does not change over time. Thus, the pulse is a soliton. See soliton for a more detailed description.
Many exactly solvable models have soliton solutions, including the Korteweg–de Vries equation, the nonlinear Schrödinger equation, the coupled nonlinear Schrödinger equation, and the sine-Gordon equation. The soliton solutions are typically obtained by means of the inverse scattering transform, and owe their stability to the integrability of the field equations. The mathematical theory of these equations is a broad and very active field of mathematical research.
Some types of tidal bore, a wave phenomenon of a few rivers including the River Severn, are 'undular': a wavefront followed by a train of solitons. Other solitons occur as the undersea internal waves, initiated by seabed topography, that propagate on the oceanic pycnocline. Atmospheric solitons also exist, such as the morning glory cloud of the Gulf of Carpentaria, where pressure solitons traveling in a temperature inversion layer produce vast linear roll clouds. The recent and not widely accepted soliton model in neuroscience proposes to explain the signal conduction within neurons as pressure solitons.
A topological soliton, also called a topological defect, is any solution of a set of partial differential equations that is stable against decay to the "trivial solution". Soliton stability is due to topological constraints, rather than integrability of the field equations. The constraints arise almost always because the differential equations must obey a set of boundary conditions, and the boundary has a nontrivial homotopy group, preserved by the differential equations. Thus, the differential equation solutions can be classified into homotopy classes.
No continuous transformation maps a soliton in one homotopy class to another. The solitons are truly distinct, and maintain their integrity, even in the face of extremely powerful forces. Examples of topological solitons include the screw dislocation in a crystalline lattice, the Dirac string and the magnetic monopole in electromagnetism, the Skyrmion and the Wess–Zumino–Witten model in quantum field theory, the magnetic skyrmion in condensed matter physics, and cosmic strings and domain walls in cosmology.

History

In 1826, Giorgio Bidone in Turin described solitary waves, but Bidone's work seems to have gone unnoticed by researchers in the Netherlands and Britain, despite being mentioned in the Edinburgh Journal of Science in the same year.
In 1834, John Scott Russell described his wave of translation:
Scott Russell spent some time making practical and theoretical investigations of these waves. He built wave tanks at his home and noticed some key properties:
  • The waves are stable, and can travel over very large distances
  • The speed depends on the size of the wave, and its width on the depth of water.
  • Unlike normal waves they will never merge – so a small wave is overtaken by a large one, rather than the two combining.
  • If a wave is too big for the depth of water, it splits into two, one big and one small.
Scott Russell's experimental work seemed at odds with Isaac Newton's and Daniel Bernoulli's theories of hydrodynamics. George Biddell Airy and George Gabriel Stokes had difficulty accepting Scott Russell's experimental observations because they could not be explained by the existing water wave theories. Additional observations were reported by Henry Bazin in 1862 after experiments carried out in the canal de Bourgogne in France. Their contemporaries spent some time attempting to extend the theory but it would take until the 1870s before Joseph Boussinesq and Lord Rayleigh published a theoretical treatment and solutions. In 1895 Diederik Korteweg and Gustav de Vries provided what is now known as the Korteweg–de Vries equation, including solitary wave and periodic cnoidal wave solutions.
File:BBM equation - overtaking solitary waves animation.gif|thumb|416px|right|
An animation of the overtaking of two solitary waves according to the Benjamin–Bona–Mahony equation – or BBM equation, a model equation for long surface gravity waves. The wave heights of the solitary waves are 1.2 and 0.6, respectively, and their velocities are 1.4 and 1.2.
The upper graph is for a frame of reference moving with the average velocity of the solitary waves.
The lower graph shows the oscillatory tail produced by the interaction. Thus, the solitary wave solutions of the BBM equation are not solitons.
In 1965 Norman Zabusky of Bell Labs and Martin Kruskal of Princeton University first demonstrated soliton behavior in media subject to the Korteweg–de Vries equation in a computational investigation using a finite difference approach. They also showed how this behavior explained the puzzling earlier work of Fermi, Pasta, Ulam, and Tsingou.
In 1967, Gardner, Greene, Kruskal and Miura discovered an inverse scattering transform enabling analytical solution of the KdV equation. The work of Peter Lax on Lax pairs and the Lax equation has since extended this to solution of many related soliton-generating systems.
Solitons are, by definition, unaltered in shape and speed by a collision with other solitons. So solitary waves on a water surface are near-solitons, but not exactly – after the interaction of two solitary waves, they have changed a bit in amplitude and an oscillatory residual is left behind.
Solitons are also studied in quantum mechanics, thanks to the fact that they could provide a new foundation of it through de Broglie's unfinished program, known as "Double solution theory" or "Nonlinear wave mechanics". This theory, developed by de Broglie in 1927 and revived in the 1950s, is the natural continuation of his ideas developed between 1923 and 1926, which extended the wave–particle duality introduced by Albert Einstein for the light quanta, to all the particles of matter. The observation of accelerating surface gravity water wave soliton using an external hydrodynamic linear potential was demonstrated in 2019. This experiment also demonstrated the ability to excite and measure the phases of ballistic solitons.

In fiber optics

Much experimentation has been done using solitons in fiber optics applications. Solitons in a fiber optic system are described by the Manakov equations.
Solitons' inherent stability make long-distance transmission possible without the use of repeaters, and could potentially double transmission capacity as well.
YearDiscovery
1973Akira Hasegawa of AT&T Bell Labs was the first to suggest that solitons could exist in optical fibers, due to a balance between self-phase modulation and anomalous dispersion. Also in 1973 Robin Bullough made the first mathematical report of the existence of optical solitons. He also proposed the idea of a soliton-based transmission system to increase performance of optical telecommunications.
1987 – from the Universities of Brussels and Limoges – made the first experimental observation of the propagation of a dark soliton, in an optical fiber.
1988Linn F. Mollenauer and his team transmitted soliton pulses over 4,000 kilometers using a phenomenon called the Raman effect, named after Sir C. V. Raman who first described it in the 1920s, to provide optical gain in the fiber.
1991A Bell Labs research team transmitted solitons error-free at 2.5 gigabits per second over more than 14,000 kilometers, using erbium optical fiber amplifiers. Pump lasers, coupled to the optical amplifiers, activate the erbium, which energizes the light pulses.
1998Thierry Georges and his team at France Telecom R&D Center, combining optical solitons of different wavelengths, demonstrated a composite data transmission of 1 terabit per second, not to be confused with Terabit-Ethernet.
The above impressive experiments have not translated to actual commercial soliton system deployments however, in either terrestrial or submarine systems, chiefly due to the Gordon–Haus jitter. The GH jitter requires sophisticated, expensive compensatory solutions that ultimately makes dense wavelength-division multiplexing soliton transmission in the field unattractive, compared to the conventional non-return-to-zero/return-to-zero paradigm. Further, the likely future adoption of the more spectrally efficient phase-shift-keyed/QAM formats makes soliton transmission even less viable, due to the Gordon–Mollenauer effect. Consequently, the long-haul fiberoptic transmission soliton has remained a laboratory curiosity.
2000Steven Cundiff predicted the existence of a vector soliton in a birefringence fiber cavity passively mode locking through a semiconductor saturable absorber mirror. The polarization state of such a vector soliton could either be rotating or locked depending on the cavity parameters.
2008D. Y. Tang et al. observed a novel form of higher-order vector soliton from the perspectives of experiments and numerical simulations. Different types of vector solitons and the polarization state of vector solitons have been investigated by his group.