Computer performance
In computing, computer performance is the amount of useful work accomplished by a computer system. Outside of specific contexts, computer performance is estimated in terms of accuracy, efficiency and speed of executing computer program instructions. When it comes to high computer performance, one or more of the following factors might be involved:
- Short response time for a given piece of work.
- High throughput.
- Low utilization of computing resources.
- * Fast data compression and decompression.
- High availability of the computing system or application.
- High bandwidth.
- Short data transmission time.
Technical and non-technical definitions
- Compared relative to other systems or the same system before/after changes
- In absolute terms, e.g. for fulfilling a contractual obligation
The word performance in computer performance means the same thing that performance means in other contexts, that is, it means "How well is the computer doing the work it is supposed to do?"
As an aspect of software quality
performance, particularly software application response time, is an aspect of software quality that is important in human–computer interactions.Performance engineering
Performance engineering within systems engineering encompasses the set of roles, skills, activities, practices, tools, and deliverables applied at every phase of the systems development life cycle which ensures that a solution will be designed, implemented, and operationally supported to meet the performance requirements defined for the solution.Performance engineering continuously deals with trade-offs between types of performance. Occasionally a CPU designer can find a way to make a CPU with better overall performance by improving one of the aspects of performance, presented below, without sacrificing the CPU's performance in other areas. For example, building the CPU out of better, faster transistors.
However, sometimes pushing one type of performance to an extreme leads to a CPU with worse overall performance, because other important aspects were sacrificed to get one impressive-looking number, for example, the chip's clock rate.
Application performance engineering
Application Performance Engineering is a specific methodology within performance engineering designed to meet the challenges associated with application performance in increasingly distributed mobile, cloud and terrestrial IT environments. It includes the roles, skills, activities, practices, tools and deliverables applied at every phase of the application lifecycle that ensure an application will be designed, implemented and operationally supported to meet non-functional performance requirements.Aspects of performance
Computer performance metrics include availability, response time, channel capacity, latency, completion time, service time, bandwidth, throughput, relative efficiency, scalability, performance per watt, compression ratio, instruction path length and speed up. CPU benchmarks are available.Availability
Availability of a system is typically measured as a factor of its reliability - as reliability increases, so does availability. Availability of a system may also be increased by the strategy of focusing on increasing testability and maintainability and not on reliability. Improving maintainability is generally easier than reliability. Maintainability estimates are also generally more accurate. However, because the uncertainties in the reliability estimates are in most cases very large, it is likely to dominate the availability problem, even while maintainability levels are very high.Response time
Response time is the total amount of time it takes to respond to a request for service. In computing, that service can be any unit of work from a simple disk IO to loading a complex web page. The response time is the sum of three numbers:- Service time - How long it takes to do the work requested.
- Wait time - How long the request has to wait for requests queued ahead of it before it gets to run.
- Transmission time – How long it takes to move the request to the computer doing the work and the response back to the requestor.
Processing speed
Some system designers building parallel computers pick CPUs based on the speed per dollar.
Channel capacity
Channel capacity is the tightest upper bound on the rate of information that can be reliably transmitted over a communications channel. By the noisy-channel coding theorem, the channel capacity of a given channel is the limiting information rate that can be achieved with arbitrarily small error probability.Information theory, developed by Claude E. Shannon during World War II, defines the notion of channel capacity and provides a mathematical model by which one can compute it. The key result states that the capacity of the channel, as defined above, is given by the maximum of the mutual information between the input and output of the channel, where the maximization is with respect to the input distribution.
Latency
Latency is a time delay between the cause and the effect of some physical change in the system being observed. Latency is a result of the limited velocity with which any physical interaction can take place. This velocity is always lower or equal to speed of light. Therefore, every physical system that has non-zero spatial dimensions will experience some sort of latency.The precise definition of latency depends on the system being observed and the nature of stimulation. In communications, the lower limit of latency is determined by the medium being used for communications. In reliable two-way communication systems, latency limits the maximum rate that information can be transmitted, as there is often a limit on the amount of information that is "in-flight" at any one moment. In the field of human-machine interaction, perceptible latency has a strong effect on user satisfaction and usability.
Computers run sets of instructions called a process. In operating systems, the execution of the process can be postponed if other processes are also executing. In addition, the operating system can schedule when to perform the action that the process is commanding. For example, suppose a process commands that a computer card's voltage output be set high-low-high-low and so on at a rate of 1000 Hz. The operating system may choose to adjust the scheduling of each transition based on an internal clock. The latency is the delay between the process instruction commanding the transition and the hardware actually transitioning the voltage from high to low or low to high.
System designers building real-time computing systems want to guarantee worst-case response. That is easier to do when the CPU has low interrupt latency and when it has a deterministic response.
Bandwidth
In computer networking, bandwidth is a measurement of bit-rate of available or consumed data communication resources, expressed in bits per second or multiples of it.Bandwidth sometimes defines the net bit rate, channel capacity, or the maximum throughput of a logical or physical communication path in a digital communication system. For example, bandwidth tests measure the maximum throughput of a computer network. The reason for this usage is that according to Hartley's law, the maximum data rate of a physical communication link is proportional to its bandwidth in hertz, which is sometimes called frequency bandwidth, spectral bandwidth, RF bandwidth, signal bandwidth or analog bandwidth.
Throughput
In general terms, throughput is the rate of production or the rate at which something can be processed.In communication networks, throughput is essentially synonymous to digital bandwidth consumption. In wireless networks or cellular communication networks, the system spectral efficiency in bit/s/Hz/area unit, bit/s/Hz/site or bit/s/Hz/cell, is the maximum system throughput divided by the analog bandwidth and some measure of the system coverage area.
In integrated circuits, often a block in a data flow diagram has a single input and a single output, and operates on discrete packets of information. Examples of such blocks are FFT modules or binary multipliers. Because the units of throughput are the reciprocal of the unit for propagation delay, which is 'seconds per message' or 'seconds per output', throughput can be used to relate a computational device performing a dedicated function such as an ASIC or embedded processor to a communications channel, simplifying system analysis.
Scalability
Scalability is the ability of a system, network, or process to handle a growing amount of work in a capable manner or its ability to be enlarged to accommodate that growth.Power consumption
The amount of electric power used by the computer. This becomes especially important for systems with limited power sources such as solar, batteries, and human power.Performance per watt
System designers building parallel computers, such as Google's hardware, pick CPUs based on their speed per watt of power, because the cost of powering the CPU outweighs the cost of the CPU itself.For spaceflight computers, the processing speed per watt ratio is a more useful performance criterion than raw processing speed due to limited on-board resources of power.