Sinkhole


A sinkhole is a depression or hole in the ground caused by some form of collapse of the surface layer. The term is sometimes used to refer to doline, enclosed depressions that are also known as shakeholes, and to openings where surface water enters into underground passages known as ponor, swallow hole or swallet. A cenote is a type of sinkhole that exposes groundwater underneath. Sink and stream sink are more general terms for sites which drain surface water, possibly by infiltration into sediment or crumbled rock.
Most sinkholes are caused by karst processes – the chemical dissolution of carbonate rocks, collapse or suffosion processes. Sinkholes are usually circular and vary in size from tens to hundreds of meters both in diameter and depth, and vary in form from soil-lined bowls to bedrock-edged chasms. Sinkholes may form gradually or suddenly, and are found worldwide.

Formation

Natural processes

Sinkholes may capture surface drainage from running or standing water, but may also form in high and dry places in specific locations. Sinkholes that capture drainage can hold it in large limestone caves. These caves may drain into tributaries of larger rivers.
The formation of sinkholes involves natural processes of erosion or gradual removal of slightly soluble bedrock by percolating water, the collapse of a cave roof, or a lowering of the water table. Sinkholes often form through the process of suffosion. For example, groundwater may dissolve the carbonate cement holding the sandstone particles together and then carry away the lax particles, gradually forming a void.
Occasionally a sinkhole may exhibit a visible opening into a cave below. In the case of exceptionally large sinkholes, such as the Minyé sinkhole in Papua New Guinea or Cedar Sink at Mammoth Cave National Park in Kentucky, an underground stream or river may be visible across its bottom flowing from one side to the other.
Sinkholes are common where the rock below the land surface is limestone or other carbonate rock, salt beds, or in other soluble rocks, such as gypsum, that can be dissolved naturally by circulating ground water. Sinkholes also occur in sandstone and quartzite terrains.
As the rock dissolves, spaces and caverns develop underground. These sinkholes can be dramatic, because the surface land usually stays intact until there is not enough support. Then, a sudden collapse of the land surface can occur.

Space and planetary bodies

On 2 July 2015, scientists reported that active pits, related to sinkhole collapses and possibly associated with outbursts, were found on the comet 67P/Churyumov-Gerasimenko by the Rosetta space probe.

Artificial processes

Collapses, commonly incorrectly labeled as sinkholes, also occur due to human activity, such as the collapse of abandoned mines and salt cavern storage in salt domes in places like Louisiana, Mississippi, and Texas, in the United States. More commonly, collapses occur in urban areas due to water main breaks or sewer collapses when old pipes give way. They can also occur from the overpumping and extraction of groundwater and subsurface fluids.
Sinkholes can also form when natural water drainage patterns are changed and new water diversion systems are developed. Some sinkholes form when the land surface is changed, such as when industrial and runoff storage ponds are created; the substantial weight of the new material can trigger a collapse of the roof of an existing void or cavity in the subsurface, resulting in development of a sinkhole.

Classification

Solution sinkholes

Solution or dissolution sinkholes form where water dissolves limestone under a soil covering. Dissolution enlarges natural openings in the rock such as joints, fractures, and bedding planes. Soil settles down into the enlarged openings forming a small depression at the ground surface.

Cover-subsidence sinkholes

Cover-subsidence sinkholes form where voids in the underlying limestone allow more settling of the soil to create larger surface depressions.

Cover-collapse sinkholes

Cover-collapse sinkholes or "dropouts" form where so much soil settles down into voids in the limestone that the ground surface collapses. The surface collapses may occur abruptly and cause catastrophic damages. New sinkhole collapses can also form when human activity changes the natural water-drainage patterns in karst areas.

Pseudokarst sinkholes

Pseudokarst sinkholes resemble karst sinkholes but are formed by processes other than the natural dissolution of rock.

Human-accelerated sinkholes

Human activities can accelerate collapses of karst sinkholes, causing collapse within a few years that would normally evolve over thousands of years under natural conditions. Soil-collapse sinkholes, which are characterized by the collapse of cavities in soil that have developed where soil falls down into underlying rock cavities, pose the most serious hazards to life and property. Fluctuation of the water level accelerates this collapse process. When water rises up through fissures in the rock, it reduces soil cohesion. Later, as the water level moves downward, the softened soil seeps downwards into rock cavities. Flowing water in karst conduits carries the soil away, preventing soil from accumulating in rock cavities and allowing the collapse process to continue.
Induced sinkholes occur where human activity alters how surface water recharges groundwater. Many human-induced sinkholes occur where natural diffused recharge is disturbed and surface water becomes concentrated. Activities that can accelerate sinkhole collapses include timber removal, ditching, laying pipelines, sewers, water lines, storm drains, and drilling. These activities can increase the downward movement of water beyond the natural rate of groundwater recharge. The increased runoff from the impervious surfaces of roads, roofs, and parking lots also accelerate man-induced sinkhole collapses.
Some induced sinkholes are preceded by warning signs, such as cracks, sagging, jammed doors, or cracking noises, but others develop with little or no warning. However, karst development is well understood, and proper site characterization can avoid karst disasters. Thus most sinkhole disasters are predictable and preventable rather than "acts of God". The American Society of Civil Engineers has declared that the potential for sinkhole collapse must be a part of land-use planning in karst areas. Where sinkhole collapse of structures could cause loss of life, the public should be made aware of the risks.
The most likely locations for sinkhole collapse are areas where there is already a high density of existing sinkholes. Their presence shows that the subsurface contains a cave system or other unstable voids. Where large cavities exist in the limestone large surface collapses can occur, such the Winter Park, Florida sinkhole collapse. Recommendations for land uses in karst areas should avoid or minimize alterations of the land surface and natural drainage.
Since water level changes accelerate sinkhole collapse, measures must be taken to minimize water level changes. The areas most susceptible to sinkhole collapse can be identified and avoided. In karst areas the traditional foundation evaluations of the ability of soil to support a structure must be supplemented by geotechnical site investigation for cavities and defects in the underlying rock. Since the soil/rock surface in karst areas are very irregular the number of subsurface samples required per unit area is usually much greater than in non-karst areas.
In 2015, the U.S. Geological Survey estimated the cost for repairs of damage arising from karst-related processes as at least $300 million per year over the preceding 15 years, but noted that this may be a gross underestimate based on inadequate data. The greatest amount of karst sinkhole damage in the United States occurs in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. The largest recent sinkhole in the USA is possibly one that formed in 1972 in Montevallo, Alabama, as a result of man-made lowering of the water level in a nearby rock quarry. This "December Giant" or "Golly Hole" sinkhole measures long, wide and deep.
Other areas of significant karst hazards include the Ebro Basin in northern Spain; the island of Sardinia; the Italian peninsula; the Chalk areas in southern England; Sichuan, China; Jamaica; France; Croatia; Bosnia and Herzegovina; Slovenia; and Russia, where one-third of the total land area is underlain by karst.

Occurrence

Sinkholes tend to occur in karst landscapes. Karst landscapes can have up to thousands of sinkholes within a small area, giving the landscape a pock-marked appearance. These sinkholes drain all the water, so there are only subterranean rivers in these areas. Examples of karst landscapes with numerous massive sinkholes include Khammouan Mountains and Mamo Plateau. The largest known sinkholes formed in sandstone are Sima Humboldt and Sima Martel in Venezuela.
Some sinkholes form in thick layers of homogeneous limestone. Their formation is facilitated by high groundwater flow, often caused by high rainfall; such rainfall causes formation of the giant sinkholes in the Nakanaï Mountains, on the New Britain island in Papua New Guinea. Powerful underground rivers may form on the contact between limestone and underlying insoluble rock, creating large underground voids.
In such conditions, the largest known sinkholes of the world have formed, like the Xiaozhai Tiankeng, giant sótanos in Querétaro and San Luis Potosí states in Mexico and others.
Unusual processes have formed the enormous sinkholes of Sistema Zacatón in Tamaulipas, where more than 20 sinkholes and other karst formations have been shaped by volcanically heated, acidic groundwater. This has produced not only the formation of the deepest water-filled sinkhole in the world—Zacatón—but also unique processes of travertine sedimentation in upper parts of sinkholes, leading to sealing of these sinkholes with travertine lids.
The U.S. state of Florida in North America is known for having frequent sinkhole collapses, especially in the central part of the state. Underlying limestone there is from 15 to 25 million years old. On the fringes of the state, sinkholes are rare or non-existent; limestone there is around 120,000 years old.
The Murge area in southern Italy also has numerous sinkholes. Sinkholes can be formed in retention ponds from large amounts of rain.
On the Arctic seafloor, methane emissions have caused large sinkholes to form.