Interbasin transfer
Interbasin transfer or transbasin diversion are terms used to describe man-made conveyance schemes which move water from one river basin where it is available, to another basin where water is less available or could be utilized better for human development. The purpose of such water resource engineering schemes can be to alleviate water shortages in the receiving basin, to generate electricity, or both. Rarely, as in the case of the Glory River which diverted water from the Tigris to Euphrates River in modern Iraq, interbasin transfers have been undertaken for political purposes. While ancient water supply examples exist, the first modern developments were undertaken in the 19th century in Australia, India and the United States, feeding large cities such as Denver and Los Angeles. Since the 20th century many more similar projects have followed in other countries, including Israel and China, and contributions to the Green Revolution in India and hydropower development in Canada.
Since conveyance of water between natural basins are described as both a subtraction at the source and as an addition at the destination, such projects may be controversial in some places and over time; they may also be seen as controversial due to their scale, costs and environmental or developmental impacts.
In Texas, for example, a 2007 Texas Water Development Board report analyzed the costs and benefits of IBTs in Texas, concluding that while some are essential, barriers to IBT development include cost, resistance to new reservoir construction and environmental impacts. Despite the costs and other concerns involved, IBTs play an essential role in the state's 50-year water planning horizon. Of 44 recommended ground and surface water conveyance and transfer projects included in the 2012 Texas State Water Plan, 15 would rely on IBTs.
While developed countries often have exploited the most economical sites already with large benefits, many large-scale diversion/transfer schemes have been proposed in developing countries such as Brazil, African countries, India and China. These more modern transfers have been justified because of their potential economic and social benefits in more heavily populated areas, stemming from increased water demand for irrigation, industrial and municipal water supply, and renewable energy needs. These projects are also justified because of possible climate change and a concern over decreased water availability in the future; in that light, these projects thus tend to hedge against ensuing droughts and increasing demand. Projects conveying water between basins economically are often large and expensive, and involve major public and/or private infrastructure planning and coordination. In some cases where desired flow is not provided by gravity alone, additional use of energy is required for pumping water to the destination. Projects of this type can also be complicated in legal terms, since water and riparian rights are affected; this is especially true if the basin of origin is a transnational river. Furthermore, these transfers can have significant environmental impacts on aquatic ecosystems at the source. In some cases water conservation measures at the destination can make such water transfers less immediately necessary to alleviate water scarcity, delay their need to be built, or reduce their initial size and cost.
Existing transfers
There are dozens of large inter-basin transfers around the world, most of them concentrated in Australia, Canada, China, India and the United States. The oldest interbasin transfers date back to the late 19th century, with an exceptionally old example being the Roman gold mine at Las Médulas in Spain. Their primary purpose usually is either to alleviate water scarcity or to generate hydropower.Primarily for the alleviation of water scarcity
Africa
- From the Oum Er-Rbia River to supply Casablanca in Morocco with drinking water
- From the tributaries of Ichkeul Lake in Tunisia to supply Tunis with drinking water
- From Lake Nasser on the Nile to the New Valley Project in the Western Desert of Egypt
- The Lesotho Highlands Water Project to supply water to Gauteng in South Africa
Americas
- The Los Angeles Aqueduct completed in 1913 transferring water from the Owens Valley to Los Angeles
- The Colorado River Aqueduct built in 1933–1941 to supply Southern California with water
- The All-American Canal built in the 1930s to bring water from the Colorado River to the Imperial Irrigation District in Southern California
- The California State Water Project built in stages in the 1960s and 1970s to transfer water from Northern to Southern California. It includes the California Aqueduct and the Edmonston Pumping Plant, which lifts water nearly up and over the Tehachapi Mountains through 10 miles of tunnels for municipal water supply in the Los Angeles Metropolitan area.
- The Cutzamala System built in stages from the late 1970s to the late 1990s to transfer water from the Cutzamala River to Mexico City for use as drinking water, lifting it over more than 1000 meters. It utilizes 7 reservoirs, a 127 km long aqueduct with 21 km of tunnels, 7.5 km open canal, and a water treatment plant. Its cost was US$1.3 billion. See also Water resources management in Mexico
- The Central Utah Project to supply the Wasatch Front with urban water and for irrigation
- The San Juan–Chama Project to bring water from the Colorado River basin into the Rio Grande basin for urban and agricultural purposes in northern New Mexico and municipal water supply for Santa Fe and Albuquerque
- The New Croton Aqueduct, completed in 1890, brings water from the New Croton Reservoir in Westchester and Putnam counties.
- The Catskill Aqueduct, completed in 1916, is significantly larger than New Croton and brings water from two reservoirs in the eastern Catskill Mountains.
- The Delaware Aqueduct, completed in 1945, taps tributaries of the Delaware River in the western Catskill Mountains and provides approximately half of New York City's water supply.
- The Colorado–Big Thompson Project, built between 1938 and 1957, diverts water from the upper Colorado River basin east underneath the Continental Divide to the South Platte basin.
- The Little Snake - Douglas Creek System, built in two stages between 1963 and 1988, moves water under the Continental Divide in southern Wyoming from the upper Colorado River basin to the North Platte basin. This is then traded for water from elsewhere in the North Platte basin, which is diverted to provide water for Cheyenne.
- Among other transfers, the Massachusetts Water Resources Authority moves water from the Quabbin Reservoir and Ware River in the Connecticut River basin and the Wachusett Reservoir in the Merrimack River basin, to provide drinking water to more densely populated areas in Eastern Massachusetts. Some of the flow is also used for hydropower.
- The Transfer of the São Francisco River in Brazil began in 2007, diverting water from the São Francisco River to the surrounding dry sertão region of four of the country's northeastern states.
Asia
- The Narmada Canal Project offtaking from Sardar Sarovar in western India transfers water from the Narmada Basin to areas coming under other river basins in Gujarat and Rajasthan for irrigation, drinking water, industrial use, etc. The canal is designed to transfer water annually from the Narmada Basin to areas under other basins in Gujarat and Rajasthan..
- The Periyar Project in Southern India from the Periyar River in Kerala to the Vaigai basin in Tamil Nadu. It consists of a dam and a tunnel with a discharging capacity of 40.75 cubic meters per second. The project was commissioned in 1895 and provides irrigation to 81,000 hectares, in addition to providing power through a plant with a capacity of 140 MW.
- The Parambikulam Aliyar project, also in Southern India, consists of seven streams, five flowing towards the west and two towards the east, which have been dammed and interlinked by tunnels. The project transfers water from the Chalakudy River basin to the Bharatapuzha and Cauvery basins for irrigation in Coimbatore district of Tamil Nadu and the Chittur area of Kerala states. It also serves for power generation with a capacity of 185 MW.
- The Kurnool Cudappah Canal in Southern India is a scheme started by a private company in 1863, transferring water from the Krishna River basin to the Pennar basin. It includes a 304 km long canal with a capacity of 84.9 cubic meters per second for irrigation.
- The Telugu Ganga project in Southern India. This project primarily meets the water supply needs of Chennai metropolitan area, but is also used for irrigation. It brings Krishna River water through 406 km of canals. The project, which was approved in 1977 and completed in 2004, involved the cooperation of four Indian States: Maharashtra, Karnataka, Andhra Pradesh and Tamil Nadu.
- The Indira Gandhi Canal linking the Ravi River, the Beas River and the Sutlej River through a system of dams, hydropower plants, tunnels, canals and irrigation systems in Northern India built in the 1960s to irrigate the Thar Desert.
- The National Water Carrier in Israel, transferring water from the Sea of Galilee to the Mediterranean coast lifting water over 372 meters. Its water is used both in agriculture and for municipal water supply.
- The Mahaweli Ganga Project in Sri Lanka includes several inter basin transfers.
- The Irtysh–Karaganda Canal in central Kazakhstan is about 450 km long with a maximum capacity of 75 cubic meters per second. It was built between 1962 and 1974 and involves a lift of 14 to 22 m.
- The South–North Water Transfer Project in China, as well as other smaller-scale projects, such as the Irtysh–Karamay–Ürümqi Canal.
- Part of the water flowing northwards down Tung Chung River in northern Lantau is diverted across the mountain ridge to Shek Pik Reservoir in southern Lantau.
- The IRTS which transfers water from the Kowloon Byewash Reservoir to the Lower Shing Mun Reservoir, in length and in diameter.
- Lingqu in Kwangsi Province