SCSI


Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices, best known for its use with storage devices such as hard disk drives. SCSI was introduced in the 1980s and has seen widespread use on servers and high-end workstations, with new SCSI standards being published as recently as SAS-4 in 2017.
The SCSI standards define commands, protocols, electrical, optical and logical interfaces. The SCSI standard defines command sets for specific peripheral device types; the presence of "unknown" as one of these types means that in theory it can be used as an interface to almost any device, but the standard is highly pragmatic and addressed toward commercial requirements. The initial Parallel SCSI was most commonly used for hard disk drives and tape drives, but it can connect a wide range of other devices, including scanners and optical disc drives, although not all controllers can handle all devices.
The first SCSI standard, X3.131-1986, generally referred to as SCSI-1, was published by the X3T9 technical committee of the American National Standards Institute in 1986. SCSI-2 was published in August 1990 as X3.T9.2/86-109, with further revisions in 1994 and subsequent adoption of a multitude of interfaces. Further refinements have resulted in improvements in performance and support for ever-increasing data storage capacity.

History

Parallel interface

SCSI is derived from the Shugart Associates System Interface, developed beginning 1979 and publicly disclosed in 1981. Larry Boucher is considered to be the "father" of SASI and ultimately SCSI due to his pioneering work first at Shugart Associates and then at Adaptec, which he founded in 1981.
A SASI controller provided a bridge between a hard disk drive's low-level interface and a host computer, which needed to read blocks of data. SASI controller boards were typically the size of a hard disk drive and were usually physically mounted to the drive's chassis. SASI, which was used in mini- and early microcomputers, defined the interface as using a 50-pin flat ribbon connector which was adopted as the SCSI-1 connector. SASI is a fully compliant subset of SCSI-1 so that many, if not all, of the then-existing SASI controllers were SCSI-1 compatible.
In around 1980, NCR Corporation had been developing a competing interface standard by the name of BYSE. In the summer of 1981, NCR abandoned their in-house efforts in favor of pursuing SASI and improving on its design for their own computer systems. Fearing that their extension of the SASI standard would induce market confusion, however, NCR briefly cancelled their contract with Shugart. NCR's proposed improvements to the design of SCSI piqued the interest of Optimem, a subsidiary of Shugart, who requested that NCR and Shugart collaborate on a unified standard. In October 1981, the two companies agreed to co-develop SASI and present their standard jointly with ANSI.
Until at least February 1982, ANSI developed the specification as "SASI" and "Shugart Associates System Interface". However, the committee documenting the standard would not allow it to be named after a company. Almost a full day was devoted to agreeing to name the standard "Small Computer System Interface", which Boucher intended to be pronounced "sexy", but ENDL's Dal Allan pronounced the new acronym as "scuzzy" and that stuck.
The NCR facility in Wichita, Kansas developed the industry's first SCSI controller chip, the NCR 5385, released in 1983. According to its developers, the chip worked the first time it was tested. A number of companies, such as Adaptec and Optimem, were early supporters of SCSI. By late 1990 at least 45 manufactures offered 251 models of parallel SCSI host adapters Today, such host adapters have largely been displaced by the faster serial SCSI host adapters.
The "small" reference in "small computer system interface" is historical; since the mid-1990s, SCSI has been available on even the largest of computer systems.
Since its standardization in 1986, SCSI has been commonly used in the Amiga, Atari, Apple Macintosh and Sun Microsystems computer lines and PC server systems. Apple started using the less-expensive parallel ATA for its low-end machines with the Macintosh Quadra 630 in 1994, and added it to its high-end desktops starting with the Power Macintosh G3 in 1997. Apple dropped on-board SCSI completely in favor of IDE and FireWire with the Power Mac G3 in 1999, while still offering a PCI SCSI host adapter as an option on up to the Power Macintosh G4 models. Sun switched its lower-end range to Parallel ATA with introduction of their Ultra 5 and 10 low end workstations using CMD640 IDE controller and continued this trend with the later Blade 100 and 150 entry level systems and did not switch to contemporary SATA interface even with the introduction of the Blade 1500 in 2003 while the higher end Blade 2500 released at the same time used Ultra320 Parallel SCSI-3. Sun moved to SATA and SAS interfaces with their last UltraSPARC-III based workstations in 2006 with the entry level Ultra 25 and mid-range Ultra 45. Commodore included SCSI on the Amiga 3000/3000T systems and it was an add-on to previous Amiga 500/2000 models. Starting with the Amiga 600/1200/4000 systems Commodore switched to the IDE interface. Atari included SCSI as standard in its Atari MEGA STE, Atari TT and Atari Falcon computer models. SCSI has never been popular in the low-priced IBM PC world, owing to the lower cost and adequate performance of ATA hard disk standard. However, SCSI drives and even SCSI RAIDs became common in PC workstations for video or audio production.

Modern SCSI

Recent physical versions of SCSISerial Attached SCSI, SCSI-over-Fibre Channel Protocol, and USB Attached SCSI break from the traditional parallel SCSI bus and perform data transfer via serial communications using point-to-point links. Although much of the SCSI documentation talks about the parallel interface, all modern development efforts use serial interfaces. Serial interfaces have a number of advantages over parallel SCSI, including higher data rates, simplified cabling, longer reach, improved fault isolation and full-duplex capability. The primary reason for the shift to serial interfaces is the clock skew issue of high-speed parallel interfaces, which makes the faster variants of parallel SCSI susceptible to problems caused by cabling and termination.
The non-physical iSCSI preserves the basic SCSI paradigm, especially the command set, almost unchanged, through embedding of SCSI-3 over TCP/IP. Therefore, iSCSI uses logical connections instead of physical links and can run on top of any network supporting IP. The actual physical links are realized on lower network layers, independently from iSCSI. Predominantly, Ethernet is used which is also of serial nature.
SCSI is popular on high-performance workstations, servers, and storage appliances. Almost all RAID subsystems on servers have used some kind of SCSI hard disk drives for decades, though a number of manufacturers offer SATA-based RAID subsystems as a cheaper option. Moreover, SAS offers compatibility with SATA devices, creating a much broader range of options for RAID subsystems together with the existence of nearline SAS drives. Instead of SCSI, modern desktop computers and notebooks typically use SATA interfaces for internal hard disk drives, with NVMe over PCIe gaining popularity as SATA can bottleneck modern solid-state drives.

Interfaces

SCSI is available in a variety of interfaces. The first was parallel SCSI, which uses a parallel bus design. Since 2005, SPI was gradually replaced by Serial Attached SCSI, which uses a serial design but retains other aspects of the technology. Many other interfaces which do not rely on complete SCSI standards still implement the [|SCSI command protocol]; others drop physical implementation entirely while retaining the SCSI architectural model. iSCSI, for example, uses TCP/IP as a transport mechanism, which is most often transported over Gigabit Ethernet or faster network links.
SCSI interfaces have often been included on computers from various manufacturers for use under Microsoft Windows, classic Mac OS, Unix, Amiga and Linux operating systems, either implemented on the motherboard or by the means of plug-in adaptors. With the advent of SAS and SATA drives, provision for parallel SCSI on motherboards was discontinued.

Parallel SCSI

Initially, the SCSI Parallel Interface was the only interface using the SCSI protocol. Its standardization started as a single-ended 8-bit bus in 1986, transferring up to, and evolved into a low-voltage differential 16-bit bus capable of up to. The last SPI-5 standard from 2003 also defined a speed which failed to be realized.
Parallel SCSI specifications include several synchronous transfer modes for the parallel cable, and an asynchronous mode. The asynchronous mode is a classic request/acknowledge protocol, which allows systems with a slow bus or simple systems to also use SCSI devices. Faster synchronous modes are used more frequently.

SCSI interfaces

Cabling

SCSI Parallel Interface

Internal parallel SCSI cables are usually ribbons, with two or more 50–, 68–, or 80–pin connectors attached. External cables are typically shielded, with 50– or 68–pin connectors at each end, depending upon the specific SCSI bus width supported. The 80–pin Single Connector Attachment is typically used for hot-pluggable devices

Fibre Channel

can be used to transport SCSI information units, as defined by the Fibre Channel Protocol for SCSI. These connections are hot-pluggable and are usually implemented with optical fiber.

Serial attached SCSI

uses a modified Serial ATA data and power cable.

iSCSI

usually uses Ethernet connectors and cables as its physical transport, but can run over any physical transport capable of transporting IP.