Roger Joseph Boscovich


Roger Joseph Boscovich was a physicist, astronomer, mathematician, philosopher, diplomat, poet, theologian, Jesuit priest, and a polymath from the Republic of Ragusa. He studied and lived in Italy and France where he also published many of his works.
Boscovich produced a precursor of atomic theory and made many contributions to astronomy, including the first geometric procedure for determining the equator of a rotating planet from three observations of a surface feature and for computing the orbit of a planet from three observations of its position. In 1753 he also discovered the absence of an atmosphere on the Moon.

Biography

Early years

Boscovich was born on 18 May 1711 in Dubrovnik, Republic of Ragusa, to Paola Bettera, daughter of a local nobleman of Italian origin, and Nikola Bošković, a Ragusan merchant. Boscovich's father was an ethnic Croat or an ethnic Serb. He was baptised on 26 May 1711 by Marinus Carolis, curatus et sacristia. The name Ruđer/Ruggiero may have been given to him because both his maternal great-grandfather, Agostino Bettera, and his mother's brother were called Ruggiero; his godfather was his uncle, Ruggiero Bettera. He was the seventh child of the family and the second youngest. His father was born in the village of Orahov Do near Ravno, at the time part of the Ottoman Empire.
His uncle, Don Ilija Bošković, was killed by Uskok bandits while celebrating Mass in 1692. While his father, Nikola, had once been a prolific trader who traveled through the Ottoman Empire, Ruđer only knew him as a bedridden invalid; he died when his son was 10 years old. Boscovich's mother Paola, nicknamed "Pavica", was a member of a cultivated Italian merchant family established in Dubrovnik in the early 17th century, when her ancestor, Pietro Bettera, settled from Bergamo in northern Italy. She was described as a robust and active woman with a happy temperament who lived to 103.
Paola Bettera Bošković left nothing in writing but her sister wrote poetry in Italian. Ruđer's cousins and playmates, Antun Bošković and Franjo Bošković, grew up into good Latinists. His brothers and sisters were all older than himself, except his sister Anica Bošković, two years his junior. His eldest sister, Mare Bošković, nineteen years his senior, was the only member of the family to marry. His second sister, Marija Bošković, became a nun in the Ragusa Convent of St Catherine. His eldest brother, Božo Bošković, thirteen years older, joined the service of the Ragusa Republic. Another brother, Bartolomej Bošković, born in 1700 and educated at the Jesuit school in Dubrovnik, left home when Ruđer was 3 to become a scholar and a Jesuit priest in Rome. He also wrote verse in both Latin and "Illyrian", but eventually burnt some of his manuscripts out of a scrupulous modesty. Another brother, Ivan Bošković, became a Dominican in a sixteenth-century monastery in Dubrovnik, whose church Ruđer knew as a child with its rich treasures and paintings by Titian and Vasari, still there today. Another brother, Petar Bošković, six years his senior, became a poet like his grandfather. He was schooled by the Jesuits, then served as an official of the Republic and made his reputation as a translator of Ovid, Corneille's Cid, and of Molière. A volume of his religious verse, Hvale Duhovne, was published in Venice in 1729.
At the age of 8 or 9, after acquiring the rudiments of reading and writing from Father Nicola Nicchei of the Church of St Nicholas, Ruđer was sent for schooling to the local Jesuit Collegium Ragusinum. During his early studies, Boscovich showed a distinct propensity for further intellectual development. He gained a reputation at school for having an easy memory and a quick, deep mind.
On 16 September 1725, Ruđer Bošković left Dubrovnik for Rome. He was in the care of two Jesuit priests who took him to the Society of Jesus, famous for its education of youth and at that time having some 800 establishments and 200,000 pupils under its care throughout the world. We learn nothing from Bošković himself until the time he entered the novitiate in 1731, but it was the usual practice for novices to spend the first two years not in the Collegium Romanum but in Sant'Andrea delle Fratte. There, he studied mathematics and physics; and so quick was his progress in these sciences that in 1740 he was appointed professor of mathematics in the college.
He was especially appropriate for this post due to his acquaintance with recent advances in science, and his skill in a classical severity of demonstration, acquired by a thorough study of the works of the Greek geometers. Several years before this appointment he had made a name for himself with a solution of the problem of finding the Sun's equator and determining the period of its rotation by observation of the spots on its surface.

Middle years

Notwithstanding the arduous duties of his professorship, he found time for investigation in various fields of physical science, and he published a very large number of dissertations, some of them of considerable length. Among the subjects were the transit of Mercury, the Aurora Borealis, the figure of the Earth, the observation of the fixed stars, the inequalities in terrestrial gravitation, the application of mathematics to the theory of the telescope, the limits of certainty in astronomical observations, the solid of greatest attraction, the cycloid, the logistic curve, the theory of comets, the tides, the law of continuity, the double refraction micrometer, and various problems of spherical trigonometry.
In 1742, he was consulted, with other men of science, by Pope Benedict XIV, as to the best means of securing the stability of the dome of St. Peter's, Rome, in which a crack had been discovered. His suggestion of placing five concentric iron bands was adopted.
In 1744, he was ordained to the Roman Catholic priesthood.
In 1745, Bošković published De Viribus Vivis in which he tried to find a middle way between Isaac Newton's gravitational theory and Gottfried Leibniz's metaphysical theory of monad-points. He developed a concept of "impenetrability" as a property of hard bodies which explained their behaviour in terms of force rather than matter. Stripping atoms of their matter, impenetrability is disassociated from hardness and then put in an arbitrary relationship to elasticity. Impenetrability has a Cartesian sense that more than one point cannot occupy the same location at once.
Bošković visited his hometown only once, in 1747, never to return. He agreed to take part in the Portuguese expedition for the survey of Brazil and the arc measurement of a degree of latitude, but was persuaded by the Pope to stay in Italy and to undertake a similar task there with Christopher Maire, an English Jesuit who measured an arc of two degrees between Rome and Rimini. The operation began at the end of 1750, and was completed in about two years. An account was published in 1755, under the name De Litteraria expeditione per pontificiam ditionem ad dimetiendos duos meridiani gradus a PP. Maire et Boscovicli. The value of this work was increased by a carefully prepared map of the States of the Church. A French translation appeared in 1770 which incorporated, as an appendix, some material first published in 1760 outlining an objective procedure for determining suitable values for the parameters of the fitted model from a greater number of observations. An unconstrained variant of this fitting procedure is now known as the L1-norm or Least absolute deviations procedure and serves as a robust alternative to the familiar L2-norm or Least Squares procedure.
A dispute arose between Francis the Grand Duke of Tuscany and the Republic of Lucca with respect to the drainage of a lake. As an agent of Lucca, Bošković was sent, in 1757, to Vienna and succeeded in bringing about a satisfactory arrangement in the matter. Here he met Karl Scherffer who became an influential promoter of the ideas of Bošković in Austria.
File:Bosco-image-1-14.jpg|thumb|right|The first page of figures from Theoria Philosophiæ Naturalis from 1763. Figure 1 is the force curve which received so much attention from later natural philosophers such as Joseph Priestley, Humphry Davy, and Michael Faraday. The ordinate is force, with positive values being repulsive, and the abscissa is radial distance. Newton's gravitational attractive force is clearly seen at the far right of figure 1.
In Vienna in 1758, he published the first edition of his famous work, Philosophiæ naturalis theoria redacta ad unicam legem virium in natura existentium, containing his atomic theory and his theory of forces.
A second edition was published in 1763 in Venice and a third again in Vienna in 1764. In 1922, it was published in London, and in 1966, in the United States. Another edition was published in Zagreb in 1974.
Another occasion to exercise his diplomatic ability soon arose. The British government suspected that warships had been fitted out in Dubrovnik for the service of France, and that therefore the neutrality of the republic had been violated. Bošković was selected to undertake an ambassadorship to London in 1760, to convince the British that nothing of the sort had occurred and provide proof of Ragusa's neutrality. This mission proved to be a complete success – a credit to him and a delight to his countrymen. During his stay in England, he was elected as a fellow of the Royal Society.
In 1761, astronomers were preparing to observe the transit of Venus across the Sun. Under the influence of the Royal Society, Bošković decided to travel to Constantinople. He arrived late and then travelled to Poland via Bulgaria and Moldavia then proceeding to Saint Petersburg where he was elected as a member of Russian Academy of Sciences. Ill health compelled him soon to return to Italy.
Bošković visited Laibach, the capital of Carniola, at least in 1757, 1758, and 1763, and made contact with the Jesuits and the Franciscan friars in the town. The Jesuits incorporated his teachings into their lectures at the Laibach Jesuit College. His physics became the foundation of physical lectures as well in other parts of the Habsburg monarchy, and influenced the thought of, among others, Gabriel Gruber and Jurij Vega, prominent physicists of the period. Both Vega and the Rationalist philosopher Franz Samuel Karpe educated their students in Vienna about the ideas of Bošković and in the spirit of his thought.