Radioisotope thermoelectric generator
A radioisotope thermoelectric generator, or radioisotope power system, is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts and is ideal for deployment in remote and harsh environments for extended periods with no risk of parts wearing out or malfunctioning.
RTGs are usually the most desirable power source for unmaintained situations that need a few hundred watts of power for durations too long for fuel cells, batteries, or generators to provide economically, and in places where solar cells are not practical. RTGs have been used as power sources in satellites, space probes, and uncrewed remote facilities such as a series of lighthouses built by the Soviet Union inside the Arctic Circle.
Safe use of RTGs requires containment of the radioisotopes long after the productive life of the unit. The expense of RTGs tends to limit their use to niche applications in rare or special situations.
History
The RTG was invented in 1954 by Mound Laboratories scientists Kenneth C. Jordan and John Birden. They were inducted into the National Inventors Hall of Fame in 2013. Jordan and Birden worked on an Army Signal Corps contract beginning on 1 January 1957, to conduct research on radioactive materials and thermocouples suitable for the direct conversion of heat to electrical energy using polonium-210 as the heat source. RTGs were developed in the US during the late 1950s by Mound Laboratories in Miamisburg, Ohio, under contract with the United States Atomic Energy Commission. The project was led by Dr. Bertram C. Blanke.The first RTG launched into space by the United States was SNAP 3B in 1961 powered by 96 grams of plutonium-238 metal, aboard the Navy Transit 4A spacecraft. One of the first terrestrial uses of RTGs was in 1966 by the US Navy at uninhabited Fairway Rock in Alaska. RTGs were used at that site until 1995.
A common RTG application is spacecraft power supply. Several generations of RTG design have been used for probes that traveled far from the Sun, rendering solar panels impractical. As such, they have been used for Pioneer 10 and 11; Voyager 1 and 2; Galileo; Ulysses; Cassini; New Horizons; and are planned for the Dragonfly mission to Titan. RTGs were also used instead of solar panels to power the two Viking landers, and for the scientific experiments left on the Moon by the crews of Apollo 12 through 17. Because the Apollo 13 Moon landing was aborted, its RTG rests in the South Pacific Ocean, in the vicinity of the Tonga Trench. The Curiosity and Perseverance Mars rover designs selected RTGs to allow greater flexibility in landing sites and longer lifespan than the solar-powered option, as used in prior generations of rovers. RTGs were also used for the Nimbus, Transit and LES satellites. By comparison, only a few space vehicles have been launched using full-fledged nuclear reactors: the Soviet RORSAT series and the American SNAP-10A.
In addition to spacecraft, the Soviet Union built 1,007 RTGs to power uncrewed lighthouses and navigation beacons on the Soviet Arctic coast by the late 1980s. Many different types of RTGs were built in the Soviet Union for a wide variety of purposes. The lighthouses were not maintained for many years after the dissolution of the Soviet Union in 1991. Some of the RTG units disappeared during this time—either by looting or by the natural forces of ice/storm/sea. In 1996, a project was begun by Russian and international supporters to decommission the RTGs in the lighthouses, and by 2021, all RTGs had been removed.
As of 1992, the United States Air Force also used RTGs to power remotely-located Arctic equipment, and the US government has used hundreds of such units to power remote stations globally. Sensing stations for Top-ROCC and SEEK IGLOO radar systems, predominantly located in Alaska, use RTGs. The units use strontium-90, and a larger number of such units have been deployed both on the ground and on the ocean floor than have been used on spacecraft, with public regulatory documents suggesting that the US had deployed at least 100–150 during the 1970s and 1980s.
In the past, small "plutonium cells" were used in implanted heart pacemakers to ensure a very long "battery life"., about ninety were still in use. By the end of 2007, the number was reported to be down to just nine. The Mound Laboratory Cardiac Pacemaker program began on 1 June 1966, in conjunction with NUMEC. When it was recognized that the heat source would not remain intact during cremation, the program was cancelled in 1972 because there was no way to completely ensure that the units would not be cremated with their users' bodies.
Design
The design of an RTG is simple by the standards of nuclear technology: the main component is a sturdy container of a radioactive material. Thermocouples are placed in the walls of the container, with the outer end of each thermocouple connected to a heat sink. Radioactive decay of the fuel produces heat. It is the temperature difference between the fuel and the heat sink that allows the thermocouples to generate electricity.A thermocouple is a thermoelectric device that can convert thermal energy directly into electrical energy using the Seebeck effect. It is made of two kinds of metal or semiconductor material. If they are connected to each other in a closed loop and the two junctions are at different temperatures, an electric current will flow in the loop. Typically a large number of thermocouples are connected in series to generate a higher voltage.
RTGs and fission reactors use very different nuclear reactions. Nuclear power reactors perform controlled nuclear fission in a chain reaction. The rate of the reaction can be controlled with neutron absorbing control rods, so power can be varied with demand or shut off entirely for maintenance. However, care is needed to avoid uncontrolled operation at dangerously high power levels, or even nuclear accident. Chain reactions do not occur in RTGs. Heat is produced through spontaneous radioactive decay at a non-adjustable and steadily decreasing rate that depends only on the amount of fuel isotope and its half-life. In an RTG, heat generation cannot be varied with demand or shut off when not needed and it is not possible to save more energy for later by reducing the power consumption. Therefore, auxiliary power supplies may be needed to meet peak demand, and adequate cooling must be provided at all times including the pre-launch and early flight phases of a space mission. While spectacular failures like a nuclear meltdown or explosion are impossible with an RTG, there is still a risk of radioactive contamination if the rocket explodes, the device reenters the atmosphere and disintegrates, terrestrial RTGs are damaged by storms or seasonal ice, or are vandalized.
Developments
Due to the shortage of plutonium-238, a new kind of RTG assisted by subcritical reactions has been proposed. In this kind of RTG, the alpha decay from the radioisotope is also used in alpha-neutron reactions with a suitable element such as beryllium. This way a long-lived neutron source is produced. Because the system has a criticality close to but less than 1, i.e. K < 1, a subcritical multiplication is achieved which increases the neutron background and produces energy from fission reactions. Though the number of fissions produced in the RTG is very small, because each fission releases over 30 times more energy than each alpha decay, up to a 10% energy gain is attainable, which translates into a reduction of the Pu needed per mission. The idea was proposed to NASA in 2012 for the yearly NASA NSPIRE competition, which translated to Idaho National Laboratory at the Center for Space Nuclear Research in 2013 for studies of feasibility. However the essentials are unmodified.RTG have been proposed for use on realistic interstellar precursor missions and interstellar probes. An example of this is the Innovative Interstellar Explorer proposal from NASA.
An RTG using Am was proposed for this type of mission in 2002. This could support mission extensions up to 1000 years on the interstellar probe, because Am decays more slowly than Pu. Other isotopes for RTG were also examined in the study, looking at traits such as watt/gram, half-life, and decay products. An interstellar probe proposal from 1999 suggested using three advanced radioisotope power sources. The RTG electricity can be used for powering scientific instruments and communication to Earth on the probes. One mission proposed using the electricity to power ion engines, calling this method radioisotope electric propulsion.
A power enhancement for radioisotope heat sources based on a self-induced electrostatic field has been proposed. According to the authors, enhancements of 5-10% could be attainable using beta sources.