Radiation hardening
Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space, around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
Most semiconductor electronic components are susceptible to radiation damage, and radiation-hardened components are based on their non-hardened equivalents, with some design and manufacturing variations that reduce the susceptibility to radiation damage. Due to the low demand and the extensive development and testing required to produce a radiation-tolerant design of a microelectronic chip, the technology of radiation-hardened chips tends to lag behind the most recent developments. They also typically cost more than their commercial counterparts.
Radiation-hardened products are typically tested to one or more resultant-effects tests, including total ionizing dose, enhanced low dose rate effects, neutron and proton displacement damage, and single event effects.
Problems caused by radiation
Environments with high levels of ionizing radiation create special design challenges. A single charged particle can knock thousands of electrons loose, causing electronic noise and signal spikes. In the case of digital circuits, this can cause results which are inaccurate or unintelligible. This is a particularly serious problem in the design of satellites, spacecraft, future quantum computers, military aircraft, nuclear power stations, and nuclear weapons. In order to ensure the proper operation of such systems, manufacturers of integrated circuits and sensors intended for the military or aerospace markets employ various methods of radiation hardening. The resulting systems are said to be rad-hardened, rad-hard, or hardened.Major radiation damage sources
Typical sources of exposure of electronics to ionizing radiation are the Van Allen radiation belts for satellites, nuclear reactors in power plants for sensors and control circuits, particle accelerators for control electronics, residual radiation from isotopes in chip packaging materials, cosmic radiation for spacecraft and high-altitude aircraft, and nuclear explosions for potentially all military and civilian electronics.Secondary particles result from interaction of other kinds of radiation with structures around the electronic devices.
- Van Allen radiation belts contain electrons and protons trapped in the geomagnetic field. The particle flux in the regions farther from the Earth can vary wildly depending on the actual conditions of the Sun and the magnetosphere. Due to their position they pose a concern for satellites.
- Nuclear reactors produce gamma radiation and neutron radiation which can affect sensor and control circuits in nuclear power plants.
- Particle accelerators produce high energy protons and electrons, and the secondary particles produced by their interactions produce significant radiation damage on sensitive control and particle detector components, of the order of magnitude of 10 MRad/year for systems such as the Large Hadron Collider.
- Chip packaging materials were an insidious source of radiation that was found to be causing soft errors in new DRAM chips in the 1970s. Traces of radioactive elements in the packaging of the chips were producing alpha particles, which were then occasionally discharging some of the capacitors used to store the DRAM data bits. These effects have been reduced today by using purer packaging materials, and employing error-correcting codes to detect and often correct DRAM errors.
- Cosmic rays come from all directions and consist of approximately 85% protons, 14% alpha particles, and 1% heavy ions, together with X-ray and gamma-ray radiation. Most effects are caused by particles with energies between 0.1 and 20 GeV. The atmosphere filters most of these, so they are primarily a concern for spacecraft and high-altitude aircraft, but can also affect ordinary computers on the surface.
- Solar particle events come from the direction of the sun and consist of a large flux of high-energy protons and heavy ions, again accompanied by X-ray radiation.
- Nuclear explosions produce a short and extremely intense surge through a wide spectrum of electromagnetic radiation, an electromagnetic pulse, neutron radiation, and a flux of both primary and secondary charged particles. In case of a nuclear war they pose a potential concern for all civilian and military electronics.
Radiation effects on electronics
Fundamental mechanisms
Two fundamental damage mechanisms take place:Lattice displacement
Lattice displacement is caused by neutrons, protons, alpha particles, heavy ions, and very high energy gamma photons. They change the arrangement of the atoms in the crystal lattice, creating lasting damage, and increasing the number of recombination centers, depleting the minority carriers and worsening the analog properties of the affected semiconductor junctions. Counterintuitively, higher doses over a short time cause partial annealing of the damaged lattice, leading to a lower degree of damage than with the same doses delivered in low intensity over a long time. This type of problem is particularly significant in bipolar transistors, which are dependent on minority carriers in their base regions; increased losses caused by recombination cause loss of the transistor gain. Components certified as ELDRS -free do not show damage with fluxes below 0.01 rad/s = 36 rad/h.Ionization effects
Ionization effects are caused by charged particles, including ones with energy too low to cause lattice effects. The ionization effects are usually transient, creating glitches and soft errors, but can lead to destruction of the device if they trigger other damage mechanisms. Photocurrent caused by ultraviolet and X-ray radiation may belong to this category as well. Gradual accumulation of holes in the oxide layer in MOSFET transistors leads to worsening of their performance, up to device failure when the dose is high enough.The effects can vary wildly depending on all the parameters – type of radiation, total dose and radiation flux, combination of types of radiation, and even the kind of device load – which makes thorough testing difficult, time-consuming, and requiring many test samples.