Radiation hardening


Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space, around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.
Most semiconductor electronic components are susceptible to radiation damage, and radiation-hardened components are based on their non-hardened equivalents, with some design and manufacturing variations that reduce the susceptibility to radiation damage. Due to the low demand and the extensive development and testing required to produce a radiation-tolerant design of a microelectronic chip, the technology of radiation-hardened chips tends to lag behind the most recent developments. They also typically cost more than their commercial counterparts.
Radiation-hardened products are typically tested to one or more resultant-effects tests, including total ionizing dose, enhanced low dose rate effects, neutron and proton displacement damage, and single event effects.

Problems caused by radiation

Environments with high levels of ionizing radiation create special design challenges. A single charged particle can knock thousands of electrons loose, causing electronic noise and signal spikes. In the case of digital circuits, this can cause results which are inaccurate or unintelligible. This is a particularly serious problem in the design of satellites, spacecraft, future quantum computers, military aircraft, nuclear power stations, and nuclear weapons. In order to ensure the proper operation of such systems, manufacturers of integrated circuits and sensors intended for the military or aerospace markets employ various methods of radiation hardening. The resulting systems are said to be rad-hardened, rad-hard, or hardened.

Major radiation damage sources

Typical sources of exposure of electronics to ionizing radiation are the Van Allen radiation belts for satellites, nuclear reactors in power plants for sensors and control circuits, particle accelerators for control electronics, residual radiation from isotopes in chip packaging materials, cosmic radiation for spacecraft and high-altitude aircraft, and nuclear explosions for potentially all military and civilian electronics.
Secondary particles result from interaction of other kinds of radiation with structures around the electronic devices.

Fundamental mechanisms

Two fundamental damage mechanisms take place:

Lattice displacement

Lattice displacement is caused by neutrons, protons, alpha particles, heavy ions, and very high energy gamma photons. They change the arrangement of the atoms in the crystal lattice, creating lasting damage, and increasing the number of recombination centers, depleting the minority carriers and worsening the analog properties of the affected semiconductor junctions. Counterintuitively, higher doses over a short time cause partial annealing of the damaged lattice, leading to a lower degree of damage than with the same doses delivered in low intensity over a long time. This type of problem is particularly significant in bipolar transistors, which are dependent on minority carriers in their base regions; increased losses caused by recombination cause loss of the transistor gain. Components certified as ELDRS -free do not show damage with fluxes below 0.01 rad/s = 36 rad/h.

Ionization effects

Ionization effects are caused by charged particles, including ones with energy too low to cause lattice effects. The ionization effects are usually transient, creating glitches and soft errors, but can lead to destruction of the device if they trigger other damage mechanisms. Photocurrent caused by ultraviolet and X-ray radiation may belong to this category as well. Gradual accumulation of holes in the oxide layer in MOSFET transistors leads to worsening of their performance, up to device failure when the dose is high enough.
The effects can vary wildly depending on all the parameters – type of radiation, total dose and radiation flux, combination of types of radiation, and even the kind of device load – which makes thorough testing difficult, time-consuming, and requiring many test samples.

Resultant effects

The "end-user" effects can be characterized in several groups:

Neutron effects

A neutron interacting with a semiconductor lattice will displace the atoms in the lattice. This leads to an increase in the count of recombination centers and deep-level defects, reducing the lifetime of minority carriers, thus affecting bipolar devices more than CMOS ones. Bipolar devices on silicon tend to show changes in electrical parameters at levels of 1010 to 1011 neutrons/cm2, while CMOS devices aren't affected until 1015 neutrons/cm2. The sensitivity of devices may increase together with increasing level of integration and decreasing size of individual structures. There is also a risk of induced radioactivity caused by neutron activation, which is a major source of noise in high energy astrophysics instruments. Induced radiation, together with residual radiation from impurities in component materials, can cause all sorts of single-event problems during the device's lifetime. GaAs LEDs, common in optocouplers, are very sensitive to neutrons. The lattice damage influences the frequency of crystal oscillators. Kinetic energy effects of charged particles belong here too.

Total ionizing dose effects

Total ionizing dose effects represent the cumulative damage of the semiconductor lattice caused by exposure to ionizing radiation over time. It is measured in rads and causes slow gradual degradation of the device's performance. A total dose greater than 5000 rads delivered to silicon-based devices in a timespan on the order of seconds to minutes will cause long-term degradation. In CMOS devices, the radiation creates electron–hole pairs in the gate insulation layers, which cause photocurrents during their recombination, and the holes trapped in the lattice defects in the insulator create a persistent gate biasing and influence the transistors' threshold voltage, making the N-type MOSFET transistors easier and the P-type ones more difficult to switch on. The accumulated charge can be high enough to keep the transistors permanently open, leading to device failure. Some self-healing takes place over time, but this effect is not too significant. This effect is the same as hot carrier degradation in high-integration high-speed electronics. Crystal oscillators are somewhat sensitive to radiation doses, which alter their frequency. The sensitivity can be greatly reduced by using swept quartz. Natural quartz crystals are especially sensitive. Radiation performance curves for total ionizing dose testing may be generated for all resultant effects testing procedures. These curves show performance trends throughout the TID test process and are included in the radiation test report.

Transient dose effects

Transient dose effects result from a brief high-intensity pulse of radiation, typically occurring during a nuclear explosion. The high radiation flux creates photocurrents in the entire body of the semiconductor, causing transistors to randomly open, changing logical states of flip-flops and memory cells. Permanent damage may occur if the duration of the pulse is too long, or if the pulse causes junction damage or a latchup. Latchups are commonly caused by the X-rays and gamma radiation flash of a nuclear explosion. Crystal oscillators may stop oscillating for the duration of the flash due to prompt photoconductivity induced in quartz.

Systems-generated EMP effects

SGEMP effects are caused by the radiation flash traveling through the equipment and causing local ionization and electric currents in the material of the chips, circuit boards, electrical cables and cases.