Particle physics
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics.
The fundamental particles in the universe are classified in the Standard Model as fermions and bosons. There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.
Quarks form hadrons, but cannot exist on their own. Hadrons that contain an odd number of quarks are called baryons and those that contain an even number are called mesons. Two baryons, the proton and the neutron, make up most of the mass of ordinary matter. Mesons are unstable and the longest-lived last for only a few hundredths of a microsecond. They occur after collisions between particles made of quarks, such as fast-moving protons and neutrons in cosmic rays. Mesons are also produced in cyclotrons or other particle accelerators.
Particles have corresponding antiparticles with the same mass but with opposite electric charges. For example, the antiparticle of the electron is the positron. The electron has a negative electric charge, the positron has a positive charge. These antiparticles can theoretically form a corresponding form of matter called antimatter. Some particles, such as the photon, are their own antiparticle.
These elementary particles are excitations of the quantum fields that also govern their interactions. The dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model. The reconciliation of gravity to the current particle physics theory is not solved; many theories have addressed this problem, such as loop quantum gravity, string theory and supersymmetry theory.
Experimental particle physics is the study of these particles in radioactive processes and in particle accelerators such as the Large Hadron Collider. Theoretical particle physics is the study of these particles in the context of cosmology and quantum theory. The two are closely interrelated: the Higgs boson was postulated theoretically before being confirmed by experiments.
History
The idea that all matter is fundamentally composed of elementary particles dates from at least the 6th century BC. In the 19th century, John Dalton, through his work on stoichiometry, concluded that each element of nature was composed of a single, unique type of particle. The word atom, after the Greek word atomos meaning "indivisible", has since then denoted the smallest particle of a chemical element, but physicists later discovered that atoms are not, in fact, the fundamental particles of nature, but are conglomerates of even smaller particles, such as the electron. The early 20th century explorations of nuclear physics and quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner, and nuclear fusion by Hans Bethe in that same year; both discoveries also led to the development of nuclear weapons. Bethe's 1947 calculation of the Lamb shift is credited with having "opened the way to the modern era of particle physics".Throughout the 1950s and 1960s, a bewildering variety of particles was found in collisions of particles from beams of increasingly high energy. It was referred to informally as the "particle zoo". Important discoveries such as the CP violation by James Cronin and Val Fitch brought new questions to matter-antimatter imbalance. After the formulation of the Standard Model during the 1970s, physicists clarified the origin of the particle zoo. The large number of particles was explained as combinations of a small number of more fundamental particles and framed in the context of quantum field theories. This reclassification marked the beginning of modern particle physics.
Standard Model
The current state of the classification of all elementary particles is explained by the Standard Model, which gained widespread acceptance in the mid-1970s after experimental confirmation of the existence of quarks. It describes the strong, weak, and electromagnetic fundamental interactions, using mediating gauge bosons. The species of gauge bosons are eight gluons,, and bosons, and the photon. The Standard Model also contains 24 fundamental fermions, which are the constituents of all matter. Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson. On 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson.The Standard Model, as currently formulated, has 61 elementary particles. Those elementary particles can combine to form composite particles, accounting for the hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the experimental tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery. In recent years, measurements of neutrino mass have provided the first experimental deviations from the Standard Model, since neutrinos do not have mass in the Standard Model.
Subatomic particles
Modern particle physics research is focused on subatomic particles, including atomic constituents, such as electrons, protons, and neutrons, that are produced by radioactive and scattering processes; such particles are photons, neutrinos, and muons, as well as a wide range of exotic particles. All particles and their interactions observed to date can be described almost entirely by the Standard Model.Dynamics of particles are also governed by quantum mechanics; they exhibit wave–particle duality, displaying particle-like behaviour under certain experimental conditions and wave-like behaviour in others. In more technical terms, they are described by quantum state vectors in a Hilbert space, which is also treated in quantum field theory. Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles.
Quarks and leptons
Ordinary matter is made from first-generation quarks and leptons. Collectively, quarks and leptons are called fermions. They have a quantum spin of half-integers and obey the Pauli exclusion principle, where no two particles may occupy the same quantum state. Quarks have fractional elementary electric charge and leptons have whole-numbered electric charge. Quarks also have color charge, which is labeled arbitrarily with no correlation to actual light color as red, green and blue. Because the interactions between the quarks store energy which can convert to other particles when the quarks are far apart enough, quarks cannot be observed independently. This is called color confinement.There are three known generations of quarks and leptons, with strong indirect evidence that a fourth generation of fermions does not exist.
Bosons
Bosons are the mediators or carriers of fundamental interactions, such as electromagnetism, the weak interaction, and the strong interaction. Electromagnetism is mediated by the photon, the quanta of light. The weak interaction is mediated by the W and Z bosons. The strong interaction is mediated by the gluon, which can link quarks together to form composite particles. Due to the aforementioned color confinement, gluons are never observed independently. The Higgs boson gives mass to the W and Z bosons via the Higgs mechanism – the gluon and photon are expected to be massless. All bosons have an integer quantum spin and can have the same quantum state.Antiparticles and color charge
Most aforementioned particles have corresponding antiparticles, which compose antimatter. Normal particles have positive lepton or baryon number, and antiparticles have these numbers negative. Most properties of corresponding antiparticles and particles are the same, with a few gets reversed; the electron's antiparticle, positron, has an opposite charge. To differentiate between antiparticles and particles, a plus or negative sign is added in superscript. For example, the electron and the positron are denoted and, respectively. However, in the case that the particle has a charge of 0, the antiparticle is denoted with a line above the symbol. As such, an electron neutrino is, whereas its antineutrino is. When a particle and an antiparticle interact with each other, they are annihilated and convert to other particles. Some particles, such as the photon or gluon, have no antiparticles.Quarks and gluons additionally have color charges, which influences the strong interaction. Quark's color charges are called red, green and blue, and in antiquarks are called antired, antigreen and antiblue. The gluon can have eight color charges, which are the result of quarks' interactions to form composite particles.
Composite
The neutrons and protons in the atomic nuclei are baryons – the neutron is composed of two down quarks and one up quark, and the proton is composed of two up quarks and one down quark. A baryon is composed of three quarks, and a meson is composed of two quarks. Baryons and mesons are collectively called hadrons. Quarks inside hadrons are governed by the strong interaction, thus are subjected to quantum chromodynamics. The bounded quarks must have their color charge to be neutral, or "white" for analogy with mixing the primary colors. More exotic hadrons can have other types, arrangement or number of quarks.An atom is made from protons, neutrons and electrons. By modifying the particles inside a normal atom, exotic atoms can be formed. A simple example would be the hydrogen-4.1, which has one of its electrons replaced with a muon.