Nuclear power plant
A nuclear power plant, also known as a nuclear power station, nuclear generating station or atomic power station is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity., the International Atomic Energy Agency reported that there were 416 nuclear power reactors in operation in 31 countries around the world, and 62 nuclear power reactors under construction.
Most nuclear power plants use thermal reactors with enriched uranium in a once-through fuel cycle. Fuel is removed when the percentage of neutron absorbing atoms becomes so large that a chain reaction can no longer be sustained, typically three years. It is then cooled for several years in on-site spent fuel pools before being transferred to long-term storage. The spent fuel, though low in volume, is high-level radioactive waste. While its radioactivity decreases exponentially, it must be isolated from the biosphere for hundreds of thousands of years, though newer technologies have the potential to significantly reduce this. Because the spent fuel is still mostly fissionable material, some countries reprocess their spent fuel by extracting fissile and fertile elements for fabrication into new fuel, although this process is more expensive than producing new fuel from mined uranium. All reactors breed some plutonium-239, which is found in the spent fuel, and because Pu-239 is the preferred material for nuclear weapons, reprocessing is seen as a weapon proliferation risk.
Building a nuclear power plant often spans five to ten years, which can accrue significant financial costs, depending on how the initial investments are financed. Because of this high construction cost and lower operations, maintenance, and fuel costs, nuclear plants are usually used for base load generation, because this maximizes the hours over which the fixed cost of construction can be amortized.
Nuclear power plants have a carbon footprint comparable to that of renewable energy such as solar farms and wind farms, and much lower than fossil fuels such as natural gas and coal. Nuclear power plants are among the safest modes of electricity generation, comparable to solar and wind power plants in terms of deaths from accidents and air pollution per terawatt-hour of electricity.
History
The first time that heat from a nuclear reactor was used to generate electricity was on 21 December 1951, at the Experimental Breeder Reactor I, powering four light bulbs.On 27 June 1954, the world's first nuclear power station to generate electricity for a power grid, the Obninsk Nuclear Power Plant, commenced operations in Obninsk, in the Soviet Union.
The world's first full scale power station, Calder Hall in the United Kingdom, opened on 17 October 1956 and was also meant to produce plutonium. The world's first full scale power station solely devoted to electricity production was the Shippingport Atomic Power Station in Pennsylvania, United States, which was connected to the grid on 18 December 1957.
Basic components
; Fuel handling; Power generation
; Reactor assembly
; Safety systems
; Steam generation
Systems
The conversion to electrical energy takes place indirectly, as in conventional thermal power stations. The fission in a nuclear reactor heats the reactor coolant. The coolant may be water or gas, or even liquid metal, depending on the type of reactor. The reactor coolant then goes to a steam generator and heats water to produce steam, or may be converted to steam directly in the reactor. The pressurized steam is then usually fed to a multi-stage steam turbine. After the steam turbine has expanded and partially condensed the steam, the remaining vapor is condensed in a condenser. The condenser is a heat exchanger which is connected to a secondary side such as a river or a cooling tower. The water is then pumped back into the steam generator and the cycle begins again. The water-steam cycle corresponds to the Rankine cycle.The nuclear reactor is the heart of the station. In its central part, the reactor's core produces heat due to nuclear fission. With this heat, a coolant is heated as it is pumped through the reactor and thereby removes the energy from the reactor. The heat from nuclear fission is used to raise steam, which runs through turbines, which in turn power the electrical generators.
Nuclear reactors usually rely on uranium to fuel the chain reaction. Uranium is a very heavy metal that is abundant on Earth and is found in sea water as well as most rocks. Naturally occurring uranium is found in two different isotopes: uranium-238, accounting for 99.3% and uranium-235 accounting for about 0.7%. U-238 has 146 neutrons and U-235 has 143 neutrons.
Different isotopes have different behaviors. For instance, U-235 is fissile which means that it is easily split and gives off a lot of energy making it ideal for nuclear energy. On the other hand, U-238 does not have that property despite it being the same element. Different isotopes also have different half-lives. U-238 has a longer half-life than U-235, so it takes longer to decay over time. This also means that U-238 is less radioactive than U-235.
Since nuclear fission creates radioactivity, the reactor core is surrounded by a protective shield. This containment absorbs radiation and prevents radioactive material from being released into the environment. In addition, many reactors are equipped with a dome of concrete to protect the reactor against both internal casualties and external impacts.
The purpose of the steam turbine is to convert the heat contained in steam into mechanical energy. The engine house with the steam turbine is usually structurally separated from the main reactor building. It is aligned so as to prevent debris from the destruction of a turbine in operation from flying towards the reactor and important safety systems.
In the case of a pressurized water reactor, the steam turbine is separated from the nuclear system. To detect a leak in the steam generator and thus the passage of radioactive water at an early stage, an activity meter is mounted to track the outlet steam of the steam generator. In contrast, boiling water reactors pass radioactive water through the steam turbine, so the turbine is kept as part of the radiologically controlled area of the nuclear power station.
The electric generator converts mechanical power supplied by the turbine into electrical power. Low-pole AC synchronous generators of high rated power are used. A cooling system removes heat from the reactor core and transports it to another area of the station, where the thermal energy can be harnessed to produce electricity or to do other useful work. Typically the hot coolant is used as a heat source for a boiler, and the pressurized steam from that drives one or more steam turbine driven electrical generators.
In the event of an emergency, safety valves can be used to prevent pipes from bursting or the reactor from exploding. The valves are designed so that they will open automatically and maintain pressure under the reactor's safety limits. In the case of the BWR, the steam is directed into the suppression chamber and condenses there. The chambers on a heat exchanger are connected to the intermediate cooling circuit.
The main condenser is a large cross-flow shell and tube heat exchanger that takes wet vapor, a mixture of liquid water and steam at saturation conditions, from the turbine-generator exhaust and condenses it back into sub-cooled liquid water so it can be pumped back to the reactor by the condensate and feedwater pumps.
In the main condenser, the wet vapor turbine exhaust come into contact with thousands of tubes that have much colder water flowing through them on the other side. The cooling water typically come from a natural body of water such as a river or lake.
Palo Verde Nuclear Generating Station, located in the desert about west of Phoenix, Arizona, is the only nuclear facility that does not use a natural body of water for cooling, instead using treated sewage from the greater Phoenix metropolitan area.
The water coming from the cooling body of water is either pumped back to the water source at a warmer temperature or returns to a cooling tower where it either cools for more uses or evaporates into water vapor that rises out the top of the tower.
The water level in the steam generator and the nuclear reactor is controlled using the feedwater system. The feedwater pump has the task of taking the water from the condensate system, increasing the pressure and forcing it into either the steam generators—in the case of a pressurized water reactor — or directly into the reactor, for boiling water reactors.
Continuous power supply to the plant is critical to ensure safe operation. Most nuclear stations require at least two distinct sources of offsite power for redundancy. These are usually provided by multiple transformers that are sufficiently separated and can receive power from multiple transmission lines. In addition, in some nuclear stations, the turbine generator can power the station's loads while the station is online, without requiring external power. This is achieved via station service transformers which tap power from the generator output before they reach the step-up transformer.
World operating status
Nuclear power plants generate approximately 10% of global electricity, sourced from around 440 reactors worldwide. They are recognized as a significant provider of low-carbon electricity, accounting for about one-quarter of the world's supply in this category. As of 2020, nuclear power stood as the second-largest source of low-carbon energy, making up 26% of the total. Nuclear power facilities are active in 32 countries or regions, and their influence extends beyond these nations through regional transmission grids, especially in Europe.In 2022, nuclear power plants generated 2545 terawatt-hours of electricity, a slight decrease from the 2653 TWh produced in 2021. Thirteen countries generated at least one-quarter of their electricity from nuclear sources. Notably, France relies on nuclear energy for about 70% of its electricity needs, while Ukraine, Slovakia, Belgium, and Hungary source around half their power from nuclear. Japan, which previously depended on nuclear for over a quarter of its electricity, is anticipated to resume similar levels of nuclear energy utilization.
Over the last 15 years, the United States has seen a significant improvement in the operational performance of its nuclear power plants, enhancing their utilization and efficiency, adding the output equivalent to 19 new 1000 MWe reactors without actual construction. In France, nuclear power plants still produce over sixty percent of this country's total power generation in 2022. While a previous goal aimed to reduce nuclear electricity generation share to lower than fifty percent by 2025, this target was postponed to 2035 in 2019 and ultimately discarded in 2023. Russia continues to export the most nuclear power plants in the world, with projects across various countries: as of July 2023, Russia was constructing 19 out of 22 reactors constructed by foreign vendors; however, some exporting projects were canceled due to the Russian invasion of Ukraine. Meanwhile, China continues to advance in nuclear energy: having 25 reactors under construction by late 2023, China is the country with the most reactors being built at one time in the world.