Polaris


Polaris is a star in the northern circumpolar constellation of Ursa Minor. It is designated α Ursae Minoris and is commonly called the North Star. With an apparent magnitude that fluctuates around 1.98, it is the brightest star in the constellation and is readily visible to the naked eye at night. The position of the star lies less than away from the north celestial pole, making it the current northern pole star. The stable position of the star in the Northern Sky makes it useful for navigation.
Although appearing to the naked eye as a single point of light, Polaris is a triple star system, composed of the primary, a yellow supergiant designated Polaris Aa, in orbit with a smaller companion, Polaris Ab; the pair is almost certainly in a wider orbit with Polaris B. The outer companion B was discovered in August 1779 by William Herschel, with the inner Aa/Ab pair only confirmed in the early 20th century.
As the closest Cepheid variable, Polaris Aa's distance is a foundational part of the cosmic distance ladder. The revised Hipparcos stellar parallax gives a distance to Polaris A of about , while the successor mission Gaia gives a distance of for Polaris B.

Stellar system

Polaris Aa is an evolved yellow supergiant of spectral type F7Ib with 5.4 solar masses. It is the first classical Cepheid to have a mass determined from its orbit. The two smaller companions are Polaris B, a F3 main-sequence star orbiting at a distance of , and Polaris Ab, a very close F6 main-sequence star with a mass of. In January 2006, NASA released images, from the Hubble telescope, that showed the three members of the Polaris ternary system.
Polaris B can be resolved with a modest telescope. William Herschel discovered the star in August 1779 using a reflecting telescope of his own, one of the best telescopes of the time.
The variable radial velocity of Polaris A was reported by W. W. Campbell in 1899, which suggested this star is a binary system. Since Polaris A is a known cepheid variable, J. H. Moore in 1927 demonstrated that the changes in velocity along the line of sight were due to a combination of the four-day pulsation period combined with a much longer orbital period and a large eccentricity of around 0.6. Moore published preliminary orbital elements of the system in 1929, giving an orbital period of about 29.7 years with an eccentricity of 0.63. This period was confirmed by proper motion studies performed by B. P. Gerasimovič in 1939.
As part of her doctoral thesis, in 1955 E. Roemer used radial velocity data to derive an orbital period of 30.46 y for the Polaris A system, with an eccentricity of 0.64. K. W. Kamper in 1996 produced refined elements with a period of and an eccentricity of. In 2019, a study by R. I. Anderson gave a period of with an eccentricity of.
There were once thought to be two more widely separated components—Polaris C and Polaris D—but these have been shown not to be physically associated with the Polaris system.

Observation

Variability

Polaris Aa, the supergiant primary component, is a low-amplitude population I classical Cepheid variable, although it was once thought to be a type II Cepheid due to its high galactic latitude. Cepheids constitute an important standard candle for determining distance, so Polaris, as the closest such star, is heavily studied. The variability of Polaris had been suspected since 1852; this variation was confirmed by Ejnar Hertzsprung in 1911.
The range of brightness of Polaris is given as 1.86–2.13, but the amplitude has changed since discovery. Prior to 1963, the amplitude was over 0.1 magnitude and was very gradually decreasing. After 1966, it very rapidly decreased until it was less than 0.05 magnitude; since then, it has erratically varied near that range. It has been reported that the amplitude is now increasing again, a reversal not seen in any other Cepheid.
The period, roughly 4 days, has also changed over time. It has steadily increased by around 4.5 seconds per year except for a hiatus in 1963–1965. This was originally thought to be due to secular redward evolution across the Cepheid instability strip, but it may be due to interference between the primary and the first-overtone pulsation modes. Authors disagree on whether Polaris is a fundamental or first-overtone pulsator and on whether it is crossing the instability strip for the first time or not.
The temperature of Polaris varies by only a small amount during its pulsations, but the amplitude of this variation is variable and unpredictable. The erratic changes of temperature and the amplitude of temperature changes during each cycle, from less than to at least, may be related to the orbit with Polaris Ab.
Research reported in Science suggests that Polaris is 2.5 times brighter today than when Ptolemy observed it, changing from third to second magnitude. Astronomer Edward Guinan considers this to be a remarkable change and is on record as saying that "if they are real, these changes are 100 times larger than predicted by current theories of stellar evolution".
Torres 2023 published a broad historical compilation of radial velocity and photometric data. He concludes that the change in the Cepheid period has reversed and is now decreasing since roughly 2010. Torres notes that TESS data is of limited utility: as a survey telescope, TESS is optimized for dimmer stars than Polaris, so Polaris significantly over-saturates TESS's cameras. Determining an accurate total brightness for Polaris from TESS is extremely difficult, although it remains suitable for timing the period.
Furthermore, apparent irregularities in Polaris Aa's behavior may coincide with the periastron passage of Ab, although imprecision in the data prevents a definitive conclusion. At the Gaia distance, the Aa-Ab closest approach is ; the radius of the primary supergiant is, meaning that the periastron separation is about 29 times its radius. This implies tidal forcing upon Aa's upper atmosphere by Ab. Such binary tidal forcing is known from heartbeat stars, where eccentric periastron approaches cause rich multimode pulsation akin to an electrocardiogram.
Szabados 1992 suggests that, among Cepheids, "phase slips" similar to what happened to Polaris in the mid 1960s are associated with binary systems.
In 2024, researchers led by Nancy Evans at the Harvard & Smithsonian published a study with fresh data on the inner binary using the interferometric CHARA Array. They improved the solution of the orbit: combining CHARA data with previous Hubble data, and in tandem with the Gaia distance of light-years, they confirmed the Cepheid radius estimate of and re-determined its mass at. The corresponding Polaris Ab mass is. Polaris remains overluminous compared to the best Cepheid evolution models, something also seen in V1334 Cygni. Polaris's rapid period change and pulsation amplitude variations are still peculiar compared to other Cepheids, but may be related to the first-overtone pulsations.
Evans et al also tentatively succeeded in imaging features on the surface of Polaris Aa: large bright and dark patches appear in close-up images, changing over time. Follow up imaging campaigns are required to confirm this detection. Polaris's age is difficult to model; current best estimates find the Cepheid to be much younger than the two main sequence components, seemingly enough to exclude a common origin, which would be quite unlikely for a triple star system.
Torres 2023 and Evans et al 2024 both suggest that recent literature cautiously agree that Polaris is a first overtone pulsator.

Role as pole star

Because Polaris lies nearly in a direct line with the Earth's rotational axis above the North Pole, it stands almost motionless in the sky, and all the stars of the northern sky appear to rotate around it. It thus provides a nearly fixed point from which to draw measurements for celestial navigation and for astrometry. The elevation of the star above the horizon gives the approximate latitude of the observer.
In 2018 Polaris was 0.66° away from the pole of rotation and so revolves around the pole in a small circle 1.3° in diameter. It will be closest to the pole soon after the year 2100. Because it is so close to the celestial north pole, its right ascension is changing rapidly due to the precession of Earth's axis, going from 2.5h in AD 2000 to 6h in AD 2100. Twice in each sidereal day Polaris's azimuth is true north; the rest of the time it is displaced eastward or westward, and the bearing must be corrected using tables or a rule of thumb. The best approximation is made using the leading edge of the "Big Dipper" asterism in the constellation Ursa Major. The leading edge is referenced to a clock face, and the true azimuth of Polaris worked out for different latitudes.
The apparent motion of Polaris towards and, in the future, away from the celestial pole, is due to the precession of the equinoxes. The celestial pole will move away from α UMi after the 21st century, passing close by Gamma Cephei by about the 41st century, moving towards Deneb by about the 91st century.
The celestial pole was close to Thuban around 2750 BCE, and during classical antiquity it was slightly closer to Kochab than to Polaris, although still about from either star. It was about the same angular distance from β UMi as to α UMi by the end of late antiquity. The Greek navigator Pytheas in ca. 320 BC described the celestial pole as devoid of stars. However, as one of the brighter stars close to the celestial pole, Polaris was used for navigation at least from late antiquity, and described as ἀεί φανής "always visible" by Stobaeus, also termed Λύχνος akin to a burner or lamp and would reasonably be described as stella polaris from about the High Middle Ages and onwards, both in Greek and Latin. On his first trans-Atlantic voyage in 1492, Christopher Columbus had to correct for the "circle described by the pole star about the pole". In Shakespeare's play Julius Caesar, written around 1599, Caesar describes himself as being "as constant as the northern star", although in Caesar's time there was no constant northern star. Despite its relative brightness, it is not, as is popularly believed, the brightest star in the sky.
Polaris was referenced in the classic Nathaniel Bowditch maritime navigation book American Practical Navigator, where it is listed as one of the navigational stars.