NetWare


NetWare is a discontinued computer network operating system developed by Novell, Inc. It initially used cooperative multitasking to run various services on a personal computer, using the IPX network protocol. The final update release was version 6.5SP8 in May 2009, and it has since been replaced by Open Enterprise Server.
The original NetWare product in 1983 supported clients running both CP/M and MS-DOS, ran over a proprietary star network topology and was based on a Novell-built file server using the Motorola 68000 processor. The company soon moved away from building its own hardware, and NetWare became hardware-independent, running on any suitable Intel-based IBM PC compatible system, and able to utilize a wide range of network cards. From the beginning NetWare implemented a number of features inspired by mainframe and minicomputer systems that were not available in its competitors' products.
In 1991, Novell introduced cheaper peer-to-peer networking products for DOS and Windows, unrelated to their server-centric NetWare. These are NetWare Lite 1.0, and later Personal NetWare 1.0 in 1993. In 1993, the main NetWare product line took a dramatic turn when version 4 introduced NetWare Directory Services, a global directory service based on ISO X.500 concepts. The directory service, along with a new e-mail system, application configuration suite, and security product were all targeted at the needs of large enterprises.
By 2000, however, Microsoft was taking more of Novell's customer base and Novell increasingly looked to a future based on a Linux kernel. The successor to NetWare, Open Enterprise Server, released in March 2005, offers all the services previously hosted by NetWare 6.5, but on a SUSE Linux Enterprise Server; the NetWare kernel remained an option until OES 11 in late 2011. NetWare 6.5SP8 General Support ended in 2010; Extended Support was available until the end of 2015, and Self Support until the end of 2017.

History

NetWare evolved from a very simple concept: file sharing instead of disk sharing. By controlling access at the level of individual files, instead of entire disks, files could be locked and better access control implemented. In 1983 when the first versions of NetWare originated, all other competing products were based on the concept of providing shared direct disk access. Novell's alternative approach was validated by IBM in 1984, which helped promote the NetWare product.
Novell NetWare shares disk space in the form of NetWare volumes, comparable to logical volumes. Client workstations running DOS run a special terminate and stay resident program that allows them to map a local drive letter to a NetWare volume. Clients log into a server in order to be allowed to map volumes, and access can be restricted according to the login name. Similarly, they can connect to shared printers on the dedicated print server, and print as if the printer is connected locally.
At the end of the 1990s, with Internet connectivity booming, the Internet's TCP/IP protocol became dominant on LANs. Novell had introduced limited TCP/IP support in NetWare 3.x and 4.x, consisting mainly of FTP services and UNIX-style LPR/LPD printing, and a Novell-developed webserver. Native TCP/IP support for the client file and print services normally associated with NetWare was introduced in NetWare 5.0. There was also a short-lived product, NWIP, that encapsulated IPX in TCP/IP, intended to ease transition of an existing NetWare environment from IPX to IP.
During the early to mid-1980s Microsoft introduced their own LAN system in LAN Manager, based on the competing NBF protocol. Early attempts to compete with NetWare failed, but this changed with Windows NT and the windows Domain concept, which, offered similar functionality to NetWare's eDirectory services, but on a system that could also be used on a desktop, and due to the vertical integration there was no need for a third-party client.

Early years

NetWare originated from consulting work by SuperSet Software, a group founded by the friends Drew Major, Dale Neibaur, Kyle Powell and later Mark Hurst. This work stemmed from their classwork at Brigham Young University in Provo, Utah, starting in October 1981.
In 1981, Raymond Noorda engaged the work by the SuperSet team. The team was originally assigned to create a CP/M disk sharing system to help network the Motorola 68000-based hardware that Novell sold at the time. The first S-Net is CP/M-68K-based and shares a hard disk. In 1983, the team was privately convinced that CP/M was a doomed platform and instead came up with a successful file-sharing system for the newly introduced IBM-compatible PC. They also wrote an application called Snipes – a text-mode game – and used it to test the new network and demonstrate its capabilities. Snipes is the first network application ever written for a commercial personal computer, and it is recognized as one of the precursors of many popular multiplayer games such as Doom and Quake.
First called ShareNet or S-Net, this network operating system was later called Novell NetWare. NetWare is based on the NetWare Core Protocol, which is a packet-based protocol that enables a client to send requests to and receive replies from a NetWare server. Initially, NCP was directly tied to the IPX/SPX protocol, and NetWare communicated natively using only IPX/SPX.
The first product to bear the NetWare name was released in 1983. The original product, NetWare 68, ran on Novell's proprietary 68000-based file server hardware, and used a star network topology. This was later joined by NetWare 86, which could use conventional Intel 8086-based PCs for the server. This was replaced in 1985 with Advanced NetWare 86, which allowed more than one server on the same network. In 1986, after the Intel 80286 processor became available, Novell released Advanced NetWare 286. Two versions were offered for sale; the basic version was sold as ELS I, plus an enhanced version, ELS II. *ELS* stood for "Entry Level System".

NetWare 286 2.''x''

Advanced NetWare version 2.x, launched in 1986, was written for the then-new 80286 CPU. The 80286 CPU features a new 16-bit protected mode that provides access to up to 16 MiB RAM as well as new mechanisms to aid multi-tasking. The combination of a higher 16 MiB RAM limit, 80286 processor feature utilization, and 256 MB NetWare volume size limit allowed the building of reliable, cost-effective server-based local area networks for the first time. The 16 MiB RAM limit was especially important, since it makes enough RAM available for disk caching to significantly improve performance. This became the key to Novell's performance while also allowing larger networks to be built.
In a significant innovation, NetWare 286 is also hardware-independent, unlike competing network server systems. Novell servers can be assembled using any brand system with an Intel 80286 CPU, any MFM, RLL, ESDI, or SCSI hard drive and any 8- or 16-bit network adapter for which NetWare drivers are available – and 18 different manufacturer's network cards were supported at launch.
The server could support up to four network cards, and these can be a mixture of technologies such as ARCNET, Token Ring and Ethernet. The operating system is provided as a set of compiled object modules that required configuration and linking. Any change to the operating system requires a re-linking of the kernel. Installation also requires the use of a proprietary low-level format program for MFM hard drives called COMPSURF.
The file system used by NetWare 2.x is NetWare File System 286, or NWFS 286, supporting volumes of up to 256 MB. NetWare 286 recognizes 80286 protected mode, extending NetWare's support of RAM from 1 MiB to the full 16 MiB addressable by the 80286. A minimum of 2 MiB is required to start up the operating system; any additional RAM is used for FAT, DET and file caching. Since 16-bit protected mode is implemented in the 80286 and every subsequent Intel x86 processor, NetWare 286 version 2.x will run on any 80286 or later compatible processor.
NetWare 2.x implements a number of features inspired by mainframe and minicomputer systems that were not available in other operating systems of the day. The System Fault Tolerance features includes standard read-after-write verification with on-the-fly bad block re-mapping and software RAID1. The Transaction Tracking System optionally protects files against incomplete updates. For single files, this requires only a file attribute to be set. Transactions over multiple files and controlled roll-backs are possible by programming to the TTS API.
NetWare 286 2.x normally requires a dedicated PC to act as the server, where the server uses DOS only as a boot loader to execute the operating system file. All memory is allocated to NetWare; no DOS ran on the server. However, a "non-dedicated" version was also available for price-conscious customers. In this, DOS 3.3 or higher remains in memory, and the processor time-slices between the DOS and NetWare programs, allowing the server computer to be used simultaneously as a network file server and as a user workstation. Because all extended memory is allocated to NetWare, DOS is limited to only 640 KiB; expanded memory managers that used the MMU of 80386 and higher processors, such as EMM386, do not work; 8086-style expanded memory on dedicated plug-in cards is possible however. Time slicing is accomplished using the keyboard interrupt, which requires strict compliance with the IBM PC design model, otherwise performance is affected.
Server licensing on early versions of NetWare 286 is accomplished by using a key card. The key card was designed for an 8-bit ISA bus, and has a serial number encoded on a ROM chip. The serial number has to match the serial number of the NetWare software running on the server. To broaden the hardware base, particularly to machines using the IBM MCA bus, later versions of NetWare 2.x do not require the key card; serialised license floppy disks are used in place of the key cards.
Licensing is normally for 100 users, but two ELS versions were also available. First a 5-user ELS in 1987, and followed by the 8-user ELS 2.12 II in 1988.