Arabidopsis thaliana
Arabidopsis thaliana, the thale cress, mouse-ear cress or arabidopsis, is a small plant from the mustard family, native to Eurasia and Africa. Commonly found along the shoulders of roads and in disturbed land, it is generally considered a weed.
A winter annual with a relatively short lifecycle, A. thaliana is a popular model organism in plant biology and genetics. For a complex multicellular eukaryote, A. thaliana has a relatively small genome of around 135 megabase pairs. It was the first plant to have its genome sequenced, and is an important tool for understanding the molecular biology of many plant traits, including flower development and light sensing.
Description
Arabidopsis thaliana is an annual plant, usually growing to 20–25 cm tall. The leaves form a rosette at the base of the plant, with a few leaves also on the flowering stem. The basal leaves are green to slightly purplish in color, 1.5–5 cm long, and 2–10 mm broad, with an entire to coarsely serrated margin; the stem leaves are smaller and unstalked, usually with an entire margin. Leaves are covered with small, unicellular hairs called trichomes. The flowers are 3 mm in diameter, arranged in a corymb; their structure is that of the typical Brassicaceae. The fruit is a silique 5–20 mm long, containing 20–30 seeds. Roots are simple in structure, with a single primary root that grows vertically downward, later producing smaller lateral roots. These roots form interactions with rhizosphere bacteria such as Bacillus megaterium.File:Müürlooga lehekarv 311 0804.JPG|thumb|upright|Scanning electron micrograph of a trichome, a leaf hair of A. thaliana, a unique structure made of a single cell
A. thaliana can complete its entire lifecycle in six weeks. The central stem that produces flowers grows after about 3 weeks, and the flowers naturally self-pollinate. In the lab, A. thaliana may be grown in Petri plates, pots, or hydroponics, under fluorescent lights or in a greenhouse.
Taxonomy
The plant was first described in 1577 in the Harz Mountains by , a physician from Nordhausen, Thüringen, Germany, who called it Pilosella siliquosa. In 1753, Carl Linnaeus renamed the plant Arabis thaliana in honor of Thal. In 1842, German botanist Gustav Heynhold erected the new genus Arabidopsis and placed the plant in that genus. The generic name, Arabidopsis, comes from Greek, meaning "resembling Arabis".Thousands of natural inbred accessions of A. thaliana have been collected from throughout its natural and introduced range. These accessions exhibit considerable genetic and phenotypic variation, which can be used to study the adaptation of this species to different environments.
Distribution and habitat
A. thaliana is native to Europe, Asia, and Africa, and its geographic distribution is rather continuous from the Mediterranean to Scandinavia and Spain to Greece. It also appears to be native in tropical alpine ecosystems in Africa and perhaps South Africa. It has been introduced and naturalized worldwide, including in North America around the 17th century.A. thaliana readily grows and often pioneers rocky, sandy, and calcareous soils. It is generally considered a weed, due to its widespread distribution in agricultural fields, roadsides, railway lines, waste ground, and other disturbed habitats, but due to its limited competitive ability and small size, it is not categorized as a noxious weed. Like most Brassicaceae species, A. thaliana is edible by humans in a salad or cooked, but it does not enjoy widespread use as a spring vegetable.
Use as a model organism
Botanists and biologists began to research A. thaliana in the early 1900s, and the first systematic description of mutants was done around 1945. A. thaliana is now widely used for studying plant sciences, including genetics, evolution, population genetics, and plant development. Although A. thaliana the plant has little direct significance for agriculture, A. thaliana the model organism has revolutionized our understanding of the genetic, cellular, and molecular biology of flowering plants.The first mutant in A. thaliana was documented in 1873 by Alexander Braun, describing a double flower phenotype. Friedrich Laibach did not propose A. thaliana as a model organism, though, until 1943. His student, Erna Reinholz, published her thesis on A. thaliana in 1945, describing the first collection of A. thaliana mutants that they generated using X-ray mutagenesis. Laibach continued his important contributions to A. thaliana research by collecting a large number of accessions. With the help of Albert Kranz, these were organised into a large collection of 750 natural accessions of A. thaliana from around the world.
In the 1950s and 1960s, John Langridge and George Rédei played an important role in establishing A. thaliana as a useful organism for biological laboratory experiments. Rédei wrote several scholarly reviews instrumental in introducing the model to the scientific community. The start of the A. thaliana research community dates to a newsletter called Arabidopsis Information Service, established in 1964. The first International Arabidopsis Conference was held in 1965, in Göttingen, Germany.
In the 1980s, A. thaliana started to become widely used in plant research laboratories around the world. It was one of several candidates that included maize, petunia, and tobacco. The latter two were attractive, since they were easily transformable with the then-current technologies, while maize was a well-established genetic model for plant biology. The breakthrough year for A. thaliana as a model plant was 1986, in which T-DNA-mediated transformation and the first cloned A. thaliana gene were described.
Genomics
Nuclear genome
Due to the small size of its genome, and because it is diploid, Arabidopsis thaliana is useful for genetic mapping and sequencing — with about 157 megabase pairs and five chromosomes, A. thaliana has one of the smallest genomes among plants. It was long thought to have the smallest genome of all flowering plants, but that title is now considered to belong to plants in the genus Genlisea, order Lamiales, with Genlisea tuberosa, a carnivorous plant, showing a genome size of approximately 61 Mbp. It was the first plant genome to be sequenced, completed in 2000 by the Arabidopsis Genome Initiative. The most up-to-date version of the A. thaliana genome is maintained by the Arabidopsis Information Resource.The genome encodes ~27,600 protein-coding genes and about 6,500 non-coding genes. However, the Uniprot database lists 39,342 proteins in their Arabidopsis reference proteome. Among the 27,600 protein-coding genes 25,402 are now annotated with "meaningful" product names, although a large fraction of these proteins is likely only poorly understood and only known in general terms. Uniprot lists more than 3,000 proteins as "uncharacterized" as part of the reference proteome.
Chloroplast genome
The plastome of A. thaliana is a 154,478 base-pair-long DNA molecule, a size typically encountered in most flowering plants. It comprises 136 genes coding for small subunit ribosomal proteins, large subunit ribosomal proteins, hypothetical chloroplast open reading frame proteins, proteins involved in photosynthetic reactions or in other functions, ribosomal RNAs, and transfer RNAs.Mitochondrial genome
The mitochondrial genome of A. thaliana is 367,808 base pairs long and contains 57 genes. There are many repeated regions in the arabidopsis mitochondrial genome. The largest repeats recombine regularly and isomerize the genome. Like most plant mitochondrial genomes, the arabidopsis mitochondrial genome exists as a complex arrangement of overlapping branched and linear molecules in vivo.Genetics
of A. thaliana is routine, using Agrobacterium tumefaciens to transfer DNA into the plant genome. The current protocol, termed "floral dip", involves simply dipping flowers into a solution containing Agrobacterium carrying a plasmid of interest and a detergent. This method avoids the need for tissue culture or plant regeneration.The A. thaliana gene knockout collections are a unique resource for plant biology made possible by the availability of high-throughput transformation and funding for genomics resources. The site of T-DNA insertions has been determined for over 300,000 independent transgenic lines, with the information and seeds accessible through online T-DNA databases. Through these collections, insertional mutants are available for most genes in A. thaliana.
Characterized accessions and mutant lines of A. thaliana serve as experimental material in laboratory studies. The most commonly used background lines are Ler, and Col, or Columbia. Other background lines less-often cited in the scientific literature are Ws, or Wassilewskija, C24, Cvi, or Cape Verde Islands, Nossen, etc. Sets of closely related accessions named Col-0, Col-1, etc., have been obtained and characterized; in general, mutant lines are available through stock centers, of which best-known are the Nottingham Arabidopsis Stock Center-NASC and the Arabidopsis Biological Resource Center-ABRC in Ohio, USA.
The Col-0 accession was selected by Rédei from within a population of seeds designated 'Landsberg' which he received from Laibach. Columbia was the reference accession sequenced in the Arabidopsis Genome Initiative. The Later line was selected by Rédei from a Landsberg population he had mutagenized with X-rays. As the Ler collection of mutants is derived from this initial line, Ler-0 does not correspond to the Landsberg accessions, which designated La-0, La-1, etc.
Trichome formation is initiated by the GLABROUS1 protein. Knockouts of the corresponding gene lead to glabrous plants. This phenotype has already been used in gene editing experiments and might be of interest as visual marker for plant research to improve gene editing methods such as CRISPR/Cas9.