Plant disease resistance
Plant disease resistance protects plants from pathogens in two ways: by pre-formed structures and chemicals, and by infection-induced responses of the immune system. Relative to a susceptible plant, disease resistance is the reduction of pathogen growth on or in the plant, while the term disease tolerance describes plants that exhibit little disease damage despite substantial pathogen levels. Disease outcome is determined by the three-way interaction of the pathogen, the plant, and the environmental conditions.
Defense-activating compounds can move cell-to-cell and systematically through the plant's vascular system. However, plants do not have circulating immune cells, so most cell types exhibit a broad suite of antimicrobial defenses. Although obvious qualitative differences in disease resistance can be observed when multiple specimens are compared, a gradation of quantitative differences in disease resistance is more typically observed between plant strains or genotypes. Plants consistently resist certain pathogens but succumb to others; resistance is usually specific to certain pathogen species or pathogen strains.
Background
Plant disease resistance is crucial to the reliable production of food, and it provides significant reductions in agricultural use of land, water, fuel, and other inputs. Plants in both natural and cultivated populations carry inherent disease resistance, but this has not always protected them.The late blight Great Famine of Ireland of the 1840s was caused by the oomycete Phytophthora infestans. The world's first mass-cultivated banana cultivar Gros Michel was lost in the 1920s to Panama disease caused by the fungus Fusarium oxysporum. The current wheat stem rust, leaf rust, and yellow stripe rust epidemics spreading from East Africa into the Indian subcontinent are caused by rust fungi Puccinia graminis and P. striiformis. Other epidemics include chestnut blight, as well as recurrent severe plant diseases such as rice blast, soybean cyst nematode, and citrus canker.
Plant pathogens can spread rapidly over great distances, vectored by water, wind, insects, and humans. Across large regions and many crop species, it is estimated that diseases typically reduce plant yields by 10% every year in more developed nations or agricultural systems, but yield loss to diseases often exceeds 20% in less developed settings.
However, disease control is reasonably successful for most crops. Disease control is achieved by use of plants that have been bred for good resistance to many diseases, and by plant cultivation approaches such as crop rotation, pathogen-free seed, appropriate planting date and plant density, control of field moisture, and pesticide use.
Common disease resistance mechanisms
Pre-formed structures and compounds
- Plant cuticle/surface
- Plant cell walls
- Antimicrobial chemicals
- Antimicrobial peptides
- Enzyme inhibitors
- Detoxifying enzymes that break down pathogen-derived toxins
- Receptors that perceive pathogen presence and activate inducible plant defences
Inducible post-infection plant defenses
- Cell wall reinforcement
- Antimicrobial chemicals, including reactive oxygen species such as hydrogen peroxide or peroxynitrite, or more complex phytoalexins such as genistein or camalexin
- Antimicrobial proteins such as defensins, thionins, or PR-1
- Antimicrobial enzymes such as chitinases, beta-glucanases, or peroxidases
- Hypersensitive response – a rapid host cell death response associated with defence induction.
Immune system
The first tier is primarily governed by pattern recognition receptors that are activated by recognition of evolutionarily conserved pathogen or microbial–associated molecular patterns. Activation of PRRs leads to intracellular signaling, transcriptional reprogramming, and biosynthesis of a complex output response that limits colonization. The system is known as PAMP-triggered immunity or as pattern-triggered immunity.
The second tier, primarily governed by R gene products, is often termed effector-triggered immunity. ETI is typically activated by the presence of specific pathogen "effectors" and then triggers strong antimicrobial responses.
In addition to PTI and ETI, plant defenses can be activated by the sensing of damage-associated compounds, such as portions of the plant cell wall released during pathogenic infection.
Responses activated by PTI and ETI receptors include ion channel gating, oxidative burst, cellular redox changes, or protein kinase cascades that directly activate cellular changes, or activate changes in gene expression that then elevate other defensive responses.
Plant immune systems show some mechanistic similarities with the immune systems of insects and mammals, but also exhibit many plant-specific characteristics. The two above-described tiers are central to plant immunity but do not fully describe plant immune systems. In addition, many specific examples of apparent PTI or ETI violate common PTI/ETI definitions, suggesting a need for broadened definitions and/or paradigms.
The term quantitative resistance refers to plant disease resistance that is controlled by multiple genes and multiple molecular mechanisms that each have small effects on the overall resistance trait. Quantitative resistance is often contrasted to ETI resistance mediated by single major-effect R genes.
Pattern-triggered immunity
, conserved molecules that inhabit multiple pathogen genera, are referred to as MAMPs by many researchers. The defenses induced by MAMP perception are sufficient to repel most pathogens. However, pathogen effector proteins are adapted to suppress basal defenses such as PTI. Many receptors for MAMPs have been discovered. MAMPs and DAMPs are often detected by transmembrane receptor-kinases that carry LRR or LysM extracellular domains.Effector triggered immunity
Effector triggered immunity is activated by the presence of pathogen effectors. The ETI response is reliant on R genes, and is activated by specific pathogen strains. Plant ETI often causes an apoptotic hypersensitive response.R genes and R proteins
Plants have evolved R genes whose products mediate resistance to specific virus, bacteria, oomycete, fungus, nematode or insect strains. R gene products are proteins that allow recognition of specific pathogen effectors, either through direct binding or by recognition of the effector's alteration of a host protein. Many R genes encode NB-LRR proteins. Most plant immune systems carry a repertoire of 100–600 different R gene homologs. Individual R genes have been demonstrated to mediate resistance to specific virus, bacteria, oomycete, fungus, nematode or insect strains. R gene products control a broad set of disease resistance responses whose induction is often sufficient to stop further pathogen growth/spread.Studied R genes usually confer specificity for particular strains of a pathogen species. As first noted by Harold Flor in his mid-20th century formulation of the gene-for-gene relationship, a plant R gene has specificity for a pathogen avirulence gene. Avirulence genes are now known to encode effectors. The pathogen Avr gene must have matched specificity with the R gene for that R gene to confer resistance, suggesting a receptor/ligand interaction for Avr and R genes. Alternatively, an effector can modify its host cellular target, and the R gene product activates defenses when it detects the modified form of the host target or decoy.
Effector biology
Effectors are central to the pathogenic or symbiotic potential of microbes and microscopic plant-colonizing animals such as nematodes. Effectors typically are proteins that are delivered outside the microbe and into the host cell. These colonist-derived effectors manipulate the host's cell physiology and development. As such, effectors offer examples of co-evolution. Pathogen host range is determined, among other things, by the presence of appropriate effectors that allow colonization of a particular host. Pathogen-derived effectors are a powerful tool to identify plant functions that play key roles in disease and in disease resistance. Apparently most effectors function to manipulate host physiology to allow disease to occur. Well-studied bacterial plant pathogens typically express a few dozen effectors, often delivered into the host by a Type III secretion apparatus. Fungal, oomycete and nematode plant pathogens apparently express a few hundred effectors.So-called "core" effectors are defined operationally by their wide distribution across the population of a particular pathogen and their substantial contribution to pathogen virulence. Genomics can be used to identify core effectors, which can then be used to discover new R gene alleles, which can be used in plant breeding for disease resistance.
Small RNAs and RNA interference
Plant sRNA pathways are understood to be important components of pathogen-associated molecular pattern -triggered immunity and effector-triggered immunity. Bacteria‐induced microRNAs in Arabidopsis have been shown to influence hormonal signalling including auxin, abscisic acid, jasmonic acid and salicylic acid. Advances in genome‐wide studies revealed a massive adaptation of host miRNA expression patterns after infection by fungal pathogens Fusarium virguliforme, Erysiphe graminis, Verticillium dahliae, and Cronartium quercuum, and the oomycete Phytophthora sojae. Changes to sRNA expression in response to fungal pathogens indicate that gene silencing may be involved in this defense pathway. However, there is also evidence that the antifungal defense response to Colletotrichum spp. infection in maize is not entirely regulated by specific miRNA induction, but may instead act to fine-tune the balance between genetic and metabolic components upon infection.Transport of sRNAs during infection is likely facilitated by extracellular vesicles and multivesicular bodies. The composition of RNA in plant EVs has not been fully evaluated, but it is likely that they are, in part, responsible for trafficking RNA. Plants can transport viral RNAs, mRNAs, miRNAs and small interfering RNAs systemically through the phloem. This process is thought to occur through the plasmodesmata and involves RNA-binding proteins that assist RNA localization in mesophyll cells. Although they have been identified in the phloem with mRNA, there is no determinate evidence that they mediate long-distant transport of RNAs. EVs may therefore contribute to an alternate pathway of RNA loading into the phloem, or could possibly transport RNA through the apoplast. There is also evidence that plant EVs can allow for interspecies transfer of sRNAs by RNA interference such as Host-Induced Gene Silencing. The transport of RNA between plants and fungi seems to be bidirectional as sRNAs from the fungal pathogen Botrytis cinerea have been shown to target host defense genes in Arabidopsis and tomato.