Cosmic microwave background
The cosmic microwave background, or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the electromagnetic spectrum. Its energy density exceeds that of all the photons emitted by all the stars in the history of the universe. The accidental discovery of the CMB in 1964 by American radio astronomers Arno Allan Penzias and Robert Woodrow Wilson was the culmination of work initiated in the 1940s.
The CMB is the key experimental evidence of the Big Bang theory for the origin of the universe. In the Big Bang cosmological models, during the earliest periods, the universe was filled with an opaque fog of dense, hot plasma of sub-atomic particles. As the universe expanded, this plasma cooled to the point where protons and electrons combined to form neutral atoms of mostly hydrogen. Unlike the plasma, these atoms could not scatter thermal radiation by Thomson scattering, and so the universe became transparent. Known as the recombination epoch, this decoupling event released photons to travel freely through space. However, the photons have grown less energetic due to the cosmological redshift associated with the expansion of the universe. The surface of last scattering refers to a shell at the right distance in space so photons are now received that were originally emitted at the time of decoupling.
The CMB is very smooth and uniform, but maps by sensitive detectors detect small but important temperature variations. Ground and space-based experiments such as COBE, WMAP and Planck have been used to measure these temperature inhomogeneities. The anisotropy structure is influenced by various interactions of matter and photons up to the point of decoupling, which results in a characteristic pattern of tiny ripples that varies with angular scale. The distribution of the anisotropy across the sky has frequency components that can be represented by a power spectrum displaying a sequence of peaks and valleys. The peak values of this spectrum hold important information about the physical properties of the early universe: the first peak determines the overall curvature of the universe, while the second and third peak detail the density of normal matter and so-called dark matter, respectively. Extracting fine details from the CMB data can be challenging, since the emission has undergone modification by foreground features such as galaxy clusters.
Features
The cosmic microwave background radiation is an emission of uniform black body thermal energy coming from all directions. Intensity of the CMB is expressed in kelvin, the SI unit of temperature. The CMB has a thermal black body spectrum at a temperature of. Variations in intensity are expressed as variations in temperature. The blackbody temperature uniquely characterizes the intensity of the radiation at all wavelengths; a measured brightness temperature at any wavelength can be converted to a blackbody temperature.The radiation is remarkably uniform across the sky, very unlike the almost point-like structure of stars or clumps of stars in galaxies. The radiation is isotropic to roughly one part in 25,000: the root mean square variations are just over 100 μK, after subtracting a dipole anisotropy from the Doppler shift of the background radiation. The latter is caused by the peculiar velocity of the Sun relative to the comoving cosmic rest frame as it moves at 369.82 ± 0.11 km/s towards the constellation Crater near its boundary with the constellation Leo. The CMB dipole and aberration at higher multipoles have been measured, consistent with galactic motion.
Despite the very small degree of anisotropy in the CMB, many aspects can be measured with high precision and such measurements are critical for cosmological theories.
In addition to temperature anisotropy, the CMB should have an angular variation in polarization. The polarisation at each direction in the sky has an orientation described in terms of E-mode and B-mode polarization. The E-mode signal is a factor of 10 less strong than the temperature anisotropy; it supplements the temperature data as they are correlated. The B-mode signal is even weaker but may contain additional cosmological data.
The anisotropy is related to physical origin of the polarisation. Excitation of an electron by linear polarised light generates polarized light at 90 degrees to the incident direction. If the incoming radiation is isotropic, different incoming directions create polarizations that cancel out. If the incoming radiation has quadrupole anisotropy, residual polarization will be seen.
Other than the temperature and polarization anisotropy, the CMB frequency spectrum is expected to feature tiny departures from the black-body law known as spectral distortions. These are also at the focus of an active research effort with the hope of a first measurement within the forthcoming decades, as they contain a wealth of information about the primordial universe and the formation of structures at late time.
The CMB contains the vast majority of photons in the universe by a factor of 400 to 1; the number density of photons in the CMB is one billion times the number density of matter in the universe. The present-day energy density of CMB photons greatly exceeds that of the photons emitted by all the stars over the history of the universe. Without the expansion of the universe to cause the cooling of the CMB, the night sky would shine as brightly as the Sun. The energy density of the CMB is, about 411 photons/cm3.
History
Early speculations
In 1931, Georges Lemaître speculated that remnants of the early universe may be observable as radiation, but his candidate was cosmic rays. Richard C. Tolman showed in 1934 that expansion of the universe would cool blackbody radiation while maintaining a thermal spectrum.The cosmic microwave background was first predicted in 1948 by Ralph Alpher and Robert Herman, in a correction they prepared for a paper by Alpher's PhD advisor George Gamow. Alpher and Herman were able to estimate the temperature of the cosmic microwave background to be 5 K.
Discovery
The first published recognition of the CMB radiation as a detectable phenomenon appeared in a brief paper by Soviet astrophysicists A. G. Doroshkevich and Igor Novikov, in the spring of 1964. In 1964, David Todd Wilkinson and Peter Roll, Robert H. Dicke's colleagues at Princeton University, began constructing a Dicke radiometer to measure the cosmic microwave background. In 1964, Arno Penzias and Robert Woodrow Wilson at the Crawford Hill location of Bell Telephone Laboratories in nearby Holmdel Township, New Jersey had built a Dicke radiometer that they intended to use for radio astronomy and satellite communication experiments. The antenna was constructed in 1959 to support Project Echo—the National Aeronautics and Space Administration's passive communications satellites, which used large Earth orbiting aluminized plastic balloons as reflectors to bounce radio signals from one point on the Earth to another. On 20 May 1964 they made their first measurement clearly showing the presence of the microwave background, with their instrument having an excess 4.2K antenna temperature which they could not account for. After receiving a telephone call from Crawford Hill, Dicke said "Boys, we've been scooped." A meeting between the Princeton and Crawford Hill groups determined that the antenna temperature was indeed due to the microwave background. Penzias and Wilson received the 1978 Nobel Prize in Physics for their discovery.Cosmic origin
The interpretation of the cosmic microwave background was a controversial issue in the late 1960s. Alternative explanations included energy from within the Solar System, from galaxies, from intergalactic plasma and from multiple extragalactic radio sources. Two requirements would show that the microwave radiation was truly "cosmic". First, the intensity vs frequency or spectrum needed to be shown to match a thermal or blackbody source. This was accomplished by 1968 in a series of measurements of the radiation temperature at higher and lower wavelengths. Second, the radiation needed be shown to be isotropic, the same from all directions. This was also accomplished by 1970, demonstrating that this radiation was truly cosmic in origin.Progress on theory
In the 1970s numerous studies showed that tiny deviations from isotropy in the CMB could result from events in the early universe.Harrison, Peebles and Yu, and Zel'dovich realized that the early universe would require quantum inhomogeneities that would result in temperature anisotropy at the level of 10−4 or 10−5. Rashid Sunyaev, using the alternative name relic radiation, calculated the observable imprint that these inhomogeneities would have on the cosmic microwave background.
COBE
After a lull in the 1970s caused in part by the many experimental difficulties in measuring CMB at high precision,increasingly stringent limits on the anisotropy of the cosmic microwave background were set by ground-based experiments during the 1980s. RELIKT-1, a Soviet cosmic microwave background anisotropy experiment on board the Prognoz 9 satellite, gave the first upper limits on the large-scale anisotropy.
The other key event in the 1980s was the proposal by Alan Guth for cosmic inflation. This theory of rapid spatial expansion gave an explanation for large-scale isotropy by allowing causal connection just before the epoch of last scattering. With this and similar theories, detailed prediction encouraged larger and more ambitious experiments.
The NASA Cosmic Background Explorer satellite orbited Earth in 1989–1996 detected and quantified the large-scale anisotropies at the limit of its detection capabilities.
The NASA COBE mission clearly confirmed the primary anisotropy with the Differential Microwave Radiometer instrument, publishing their findings in 1992. The team received the Nobel Prize in physics for 2006 for this discovery.