Photon


A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can only move at one speed, the speed of light measured in vacuum. The photon belongs to the class of boson particles.
As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. The modern photon concept originated during the first two decades of the 20th century with the work of Albert Einstein, who built upon the research of Max Planck. While Planck was trying to explain how matter and electromagnetic radiation could be in thermal equilibrium with one another, he proposed that the energy stored within a material object should be regarded as composed of an integer number of discrete, equal-sized parts. To explain the photoelectric effect, Einstein introduced the idea that light itself is made of discrete units of energy. In 1926, Gilbert N. Lewis popularized the term photon for these energy units. Subsequently, many other experiments validated Einstein's approach.
In the Standard Model of particle physics, photons and other elementary particles are described as a necessary consequence of physical laws having a certain symmetry at every point in spacetime. The intrinsic properties of particles, such as charge, mass, and spin, are determined by gauge symmetry. The photon concept has led to momentous advances in experimental and theoretical physics, including lasers, Bose–Einstein condensation, quantum field theory, and the probabilistic interpretation of quantum mechanics. It has been applied to photochemistry, high-resolution microscopy, and measurements of molecular distances. Moreover, photons have been studied as elements of quantum computers, and for applications in optical imaging and optical communication such as quantum cryptography.

Physical properties

The photon has no electric charge, is generally considered to have zero rest mass, and is a stable particle. The experimental upper limit on the photon mass is very small, on the order of 10−53 g; its lifetime would be more than 1018 years. For comparison, the age of the universe is about years.
In a vacuum, a photon has two possible polarization states. The photon is the gauge boson for electromagnetism, and therefore all other quantum numbers of the photon are zero. Also, photons obey Bose–Einstein statistics, and not Fermi–Dirac statistics. That is, they do not obey the Pauli exclusion principle, and more than one photon can occupy the same bound quantum state.
Photons are emitted when a charge is accelerated and emits synchrotron radiation. During a molecular, atomic, or nuclear transition to a lower energy level, the photons emitted have characteristic energies ranging from radio waves to gamma rays. Photons can also be emitted when a particle and its corresponding antiparticle are annihilated.

Energy and momentum

In a quantum mechanical model, electromagnetic waves transfer energy in photons with energy proportional to frequency
where is the Planck constant, a fundamental physical constant. The energy can be written with angular frequency or wavelength :
where is called the reduced Planck constant and is the speed of light.
The momentum of a photon
where is the wave vector, where
Since points in the direction of the photon's propagation, the magnitude of its momentum is
The photon energy can be written as where is the magnitude of the momentum vector. This is consistent with the energy–momentum relation of special relativity,
when.

Polarization and spin angular momentum

The photon also carries spin angular momentum, which is related to photon polarization..
The angular momentum of the photon has two possible values, either or. These two possible values correspond to the two possible pure states of circular polarization. Collections of photons in a light beam may have mixtures of these two values; a linearly polarized light beam will act as if it were composed of equal numbers of the two possible angular momenta.
The spin angular momentum of light does not depend on its frequency, and was experimentally verified by C. V. Raman and Suri Bhagavantam in 1931.

Antiparticle annihilation

The collision of a particle with its antiparticle can create photons. In free space at least two photons must be created since, in the center of momentum frame, the colliding antiparticles have no net momentum, whereas a single photon always has momentum. Hence, conservation of momentum requires that at least two photons are created, with zero net momentum. The energy of the two photons, or, equivalently, their frequency, may be determined from conservation of four-momentum.
Seen another way, the photon can be considered as its own antiparticle. The reverse process, pair production, is the dominant mechanism by which high-energy photons such as gamma rays lose energy while passing through matter. That process is the reverse of "annihilation to one photon" allowed in the electric field of an atomic nucleus.
The classical formulae for the energy and momentum of electromagnetic radiation can be re-expressed in terms of photon events. For example, the pressure of electromagnetic radiation on an object derives from the transfer of photon momentum per unit time and unit area to that object, since pressure is force per unit area and force is the change in momentum per unit time.

Experimental checks on photon mass

Current commonly accepted physical theories imply or assume the photon to be strictly massless. If photons were not purely massless, their speeds would vary with frequency, with lower-energy photons moving slightly slower than higher-energy photons. Relativity would be unaffected by this; the so-called speed of light, c, would then not be the actual speed at which light moves, but a constant of nature which is the upper bound on speed that any object could theoretically attain in spacetime. Thus, it would still be the speed of spacetime ripples, but it would not be the speed of photons.
If a photon did have non-zero mass, there would be other effects as well. Coulomb's law would be modified and the electromagnetic field would have an extra physical degree of freedom. These effects yield more sensitive experimental probes of the photon mass than the frequency dependence of the speed of light. If Coulomb's law is not exactly valid, then that would allow the presence of an electric field to exist within a hollow conductor when it is subjected to an external electric field. This provides a means for precision tests of Coulomb's law. A null result of such an experiment has set a limit of.
Sharper upper limits on the mass of light have been obtained in experiments designed to detect effects caused by the galactic vector potential. Although the galactic vector potential is large because the galactic magnetic field exists on great length scales, only the magnetic field would be observable if the photon is massless. In the case that the photon has mass, the mass term m'A'A would affect the galactic plasma. The fact that no such effects are seen implies an upper bound on the photon mass of. The galactic vector potential can also be probed directly by measuring the torque exerted on a magnetized ring. Such methods were used to obtain the sharper upper limit of given by the Particle Data Group.
These sharp limits from the non-observation of the effects caused by the galactic vector potential have been shown to be model-dependent. If the photon mass is generated via the Higgs mechanism then the upper limit of from the test of Coulomb's law is valid.

Historical development

In most theories up to the eighteenth century, light was pictured as being made of particles. Since particle models cannot easily account for the refraction, diffraction and birefringence of light, wave theories of light were proposed by René Descartes, Robert Hooke, and Christiaan Huygens ; however, particle models remained dominant, chiefly due to the influence of Isaac Newton. In the early 19th century, Thomas Young and August Fresnel clearly demonstrated the interference and diffraction of light, and by 1850 wave models were generally accepted. James Clerk Maxwell's 1865 prediction that light was an electromagnetic wave – which was confirmed experimentally in 1888 by Heinrich Hertz's detection of radio waves – seemed to be the final blow to particle models of light.
File:Light-wave.svg|thumb|upright=1.25|In 1900, Maxwell's theoretical model of light as oscillating electric and magnetic fields seemed complete. However, several observations could not be explained by any wave model of electromagnetic radiation, leading to the idea that light-energy was packaged into quanta described by Later experiments showed that these light-quanta also carry momentum and, thus, can be considered particles: The photon concept was born, leading to a deeper understanding of the electric and magnetic fields themselves.
The Maxwell wave theory, however, does not account for all properties of light. The Maxwell theory predicts that the energy of a light wave depends only on its intensity, not on its frequency; nevertheless, several independent types of experiments show that the energy imparted by light to atoms depends only on the light's frequency, not on its intensity. For example, some chemical reactions are provoked only by light of frequency higher than a certain threshold; light of frequency lower than the threshold, no matter how intense, does not initiate the reaction. Similarly, electrons can be ejected from a metal plate by shining light of sufficiently high frequency on it ; the energy of the ejected electron is related only to the light's frequency, not to its intensity.
At the same time, investigations of black-body radiation carried out over four decades by various researchers culminated in Max Planck's hypothesis that the energy of any system that absorbs or emits electromagnetic radiation of frequency is an integer multiple of an energy quantum As shown by Albert Einstein, some form of energy quantization must be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics.
Since the Maxwell theory of light allows for all possible energies of electromagnetic radiation, most physicists assumed initially that the energy quantization resulted from some unknown constraint on the matter that absorbs or emits the radiation. In 1905, Einstein was the first to propose that energy quantization was a property of electromagnetic radiation itself. Although he accepted the validity of Maxwell's theory, Einstein pointed out that many anomalous experiments could be explained if the energy of a Maxwellian light wave were localized into point-like quanta that move independently of one another, even if the wave itself is spread continuously over space. In 1909 and 1916, Einstein showed that, if Planck's law regarding black-body radiation is accepted, the energy quanta must also carry momentum making them full-fledged particles.
File:Bohr-atom-PAR.svg|thumb|Up to 1923, most physicists were reluctant to accept that light itself was quantized. Instead, they tried to explain photon behaviour by quantizing only matter, as in the Bohr model of the hydrogen atom. Even though these semiclassical models were only a first approximation, they were accurate for simple systems and they led to quantum mechanics.
As recounted in Robert Millikan's 1923 Nobel lecture, Einstein's 1905 predicted energy relationship was verified experimentally by 1916 but the local concept of the quanta remained unsettled.
Most physicists were reluctant to believe that electromagnetic radiation itself might be particulate and thus an example of wave-particle duality.
Then in 1922 Arthur Compton experiment showed that photons carried momentum proportional to their wave number in an experiment now called Compton scattering that appeared to clearly support a localized quantum model. At least for Millikan, this settled the matter. Compton received the Nobel Prize in 1927 for his scattering work.
Even after Compton's experiment, Niels Bohr, Hendrik Kramers and John Slater made one last attempt to preserve the Maxwellian continuous electromagnetic field model of light, the so-called BKS theory. An important feature of the BKS theory is how it treated the conservation of energy and the conservation of momentum. In the BKS theory, energy and momentum are only conserved on the average across many interactions between matter and radiation. However, refined Compton experiments showed that the conservation laws hold for individual interactions. Accordingly, Bohr and his co-workers gave their model "as honorable a funeral as possible". Nevertheless, the failures of the BKS model inspired Werner Heisenberg in his development of matrix mechanics.
By the late 1920, the pivotal question was how to unify Maxwell's wave theory of light with its experimentally observed particle nature. The answer to this question occupied Albert Einstein for the rest of his life, and was solved in quantum electrodynamics and its successor, the Standard Model.
A few physicists persisted in developing semiclassical models in which electromagnetic radiation is not quantized, but matter appears to obey the laws of quantum mechanics. Although the evidence from chemical and physical experiments for the existence of photons was overwhelming by the 1970s, this evidence could not be considered as absolutely definitive; since it relied on the interaction of light with matter, and a sufficiently complete theory of matter could in principle account for the evidence.
In the 1970s and 1980s photon-correlation experiments definitively demonstrated quantum photon effects.
These experiments produce results that cannot be explained by any classical theory of light, since they involve anticorrelations that result from the quantum measurement process. In 1974, the first such experiment was carried out by Clauser, who reported a violation of a classical Cauchy–Schwarz inequality. In 1977, Kimble et al. demonstrated an analogous anti-bunching effect of photons interacting with a beam splitter; this approach was simplified and sources of error eliminated in the photon-anticorrelation experiment of Grangier, Roger, & Aspect ; This work is reviewed and simplified further in Thorn, Neel, et al..