Mechanical calculator


A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or a simulation like an analog computer or a slide rule. Most mechanical calculators were comparable in size to small desktop computers and have been rendered obsolete by the advent of the electronic calculator and the digital computer.
In 1642, Blaise Pascal invented the first operational mechanical calculator with better tens-carry. Concerned about his father's exhausting work as tax collector in Rouen, Pascal designed the Pascaline to help with the large amount of tedious arithmetic required.
In 1672, Gottfried Leibniz started designing an entirely new machine called the Stepped Reckoner. It used a stepped drum, built by and named after him, the Leibniz wheel, was the first two-motion design, the first to use cursors and the first to have a movable carriage. Leibniz built two Stepped Reckoners, one in 1694 and one in 1706. The Leibniz wheel was used in many calculating machines for 200 years, and into the 1970s with the Curta hand calculator, until the advent of the electronic calculator in the mid-1970s. Leibniz was also the first to promote the idea of a pinwheel calculator.
During the 18th century, several inventors in Europe were working on mechanical calculators for all four species. Philipp Matthäus Hahn, Johann Helfreich Müller and others constructed machines that were working flawless, but due to the enormous amount of manual work and high precision needed for these machines they remained singletons and stayed mostly in cabinets of couriosity of their respective rulers. Only Müller's 1783 machine was put to use tabulating lumber prices; it later came into possession of the landgrave in Darmstadt.
Thomas' arithmometer, the first commercially successful machine, was manufactured in 1851; it was the first mechanical calculator strong enough and reliable enough to be used daily in an office environment. For forty years the arithmometer was the only type of mechanical calculator available for sale until the industrial production of the more successful Odhner Arithmometer in 1890.
The comptometer, introduced in 1887, was the first machine to use a keyboard that consisted of columns of nine keys for each digit. The Dalton adding machine, manufactured in 1902, was the first to have a 10 key keyboard. Electric motors were used on some mechanical calculators from 1901. In 1961, a comptometer type machine, the Anita Mk VII from Sumlock, became the first desktop mechanical calculator to receive an all-electronic calculator engine, creating the link in between these two industries and marking the beginning of its decline. The production of mechanical calculators came to a stop in the middle of the 1970s closing an industry that had lasted for 120 years.
Charles Babbage designed two kinds of mechanical calculators, which were too sophisticated to be built in his lifetime, and the dimensions of which required a steam engine to power them. The first was an automatic mechanical calculator, his difference engine, which could automatically compute and print mathematical tables. In 1855, Georg Scheutz became the first of a handful of designers to succeed at building a smaller and simpler model of his difference engine. The second one was a programmable mechanical calculator, his analytical engine, which Babbage started to design in 1834; "in less than two years he had sketched out many of the salient features of the modern computer. A crucial step was the adoption of a punched card system derived from the Jacquard loom" making it infinitely programmable. In 1937, Howard Aiken convinced IBM to design and build the ASCC/Mark I, the first machine of its kind, based on the architecture of the analytical engine; when the machine was finished some hailed it as "Babbage's dream come true".

Ancient history

A short list of other precursors to the mechanical calculator must include a group of mechanical analog computers which, once set, are only modified by the continuous and repeated action of their actuators. Before the common era, there are odometers and the Antikythera mechanism, a seemingly out of place, unique, geared astronomical clock, followed more than a millennium later by early mechanical clocks, geared astrolabes and followed in the 15th century by pedometers. These machines were all made of toothed gears linked by some sort of carry mechanisms. These machines always produce identical results for identical initial settings unlike a mechanical calculator where all the wheels are independent but are also linked together by the rules of arithmetic.

The 17th century

Overview

The 17th century marked the beginning of the history of mechanical calculators, as it saw the invention of its first machines, including Pascal's calculator, in 1642. Blaise Pascal had invented a machine which he presented as being able to perform computations that were previously thought to be only humanly possible.
The 17th century also saw the invention of some very powerful tools to aid arithmetic calculations like Napier's bones, logarithmic tables and the slide rule which, for their ease of use by scientists in multiplying and dividing, ruled over and impeded the use and development of mechanical calculators until the production release of the arithmometer in the mid 19th century.

Invention of the mechanical calculator

In 1623 and 1624 Wilhelm Schickard, in two letters that he sent to Johannes Kepler, reported his design and construction of what he referred to as an “arithmeticum organum”, which would later be described as a Rechenuhr. The machine was designed to assist in all the four basic functions of arithmetic. Amongst its uses, Schickard suggested it would help in the laborious task of calculating astronomical tables. The machine could add and subtract six-digit numbers, and indicated an overflow of this capacity by ringing a bell. The adding machine in the base was primarily provided to assist in the difficult task of adding or multiplying two multi-digit numbers. To this end an ingenious arrangement of rotatable Napier's bones were mounted on it. It even had an additional "memory register" to record intermediate calculations. Whilst Schickard noted that the adding machine was working, his letters mention that he had asked a professional, a clockmaker named Johann Pfister, to build a finished machine. Regrettably it was destroyed in a fire either whilst still incomplete, or in any case before delivery. Schickard abandoned his project soon after. He and his entire family were wiped out in 1635 by bubonic plague during the Thirty Years' War.
Schickard's machine used clock wheels which were made stronger and were therefore heavier, to prevent them from being damaged by the force of an operator input. Each digit used a display wheel, an input wheel and an intermediate wheel. During a carry transfer all these wheels meshed with the wheels of the digit receiving the carry.
Blaise Pascal invented a mechanical calculator with a sophisticated carry mechanism in 1642. After three years of effort and 50 prototypes he introduced his calculator to the public. He built twenty of these machines in the following ten years. This machine could add and subtract two numbers directly and multiply and divide by repetition. Since, unlike Schickard's machine, the Pascaline dials could only rotate in one direction zeroing it after each calculation required the operator to dial in all 9s and then propagate a carry right through the machine. This suggests that the carry mechanism would have proved itself in practice many times over. This is a testament to the quality of the Pascaline because none of the 17th and 18th century criticisms of the machine mentioned a problem with the carry mechanism and yet it was fully tested on all the machines, by their resets, all the time.
In 1672, Gottfried Leibniz started working on adding direct multiplication to what he understood was the working of Pascal's calculator. However, it is doubtful that he had ever fully seen the mechanism and the method could not have worked because of the lack of reversible rotation in the mechanism. Accordingly, he eventually designed an entirely new machine called the Stepped Reckoner; it used his Leibniz wheels, was the first two-motion calculator, the first to use cursors and the first to have a movable carriage. Leibniz built two Stepped Reckoners, one in 1694 and one in 1706. Only the machine built in 1694 is known to exist; it was rediscovered at the end of the 19th century having been forgotten in an attic in the University of Göttingen.
Leibniz had invented his namesake wheel and the principle of a two-motion calculator, but after forty years of development he wasn't able to produce a machine that was fully operational; this makes Pascal's calculator the only working mechanical calculator in the 17th century. Leibniz was also the first person to describe a pinwheel calculator. He once said "It is unworthy of excellent men to lose hours like slaves in the labour of calculation which could safely be relegated to anyone else if machines were used."

Other calculating machines

Schickard, Pascal and Leibniz were inevitably inspired by the role of clockwork which was highly celebrated in the seventeenth century. However, simple-minded application of interlinked gears was insufficient for any of their purposes. Schickard introduced the use of a single toothed "mutilated gear" to enable the carry to take place. Pascal improved on that with his famous weighted sautoir. Leibniz went even further in relation to the ability to use a moveable carriage to perform multiplication more efficiently, albeit at the expense of a fully working carry mechanism.
The principle of the clock for a direct-entry calculating machine couldn't be implemented to create a fully effective calculating machine without additional innovation with the technological capabilities of the 17th century, because their gears would jam when a carry had to be moved several places along the accumulator. The only 17th-century calculating clocks that have survived to this day do not have a machine-wide carry mechanism and therefore cannot be called fully effective mechanical calculators. A much more successful calculating clock was built by the Italian Giovanni Poleni in the 18th century and was a two-motion calculating clock.
  • In 1623, Wilhelm Schickard, a German professor of Hebrew and Astronomy, designed a calculating clock which he drew on two letters that he wrote to Johannes Kepler. The first machine to be built by a professional was destroyed during its construction and Schickard abandoned his project in 1624. These drawings had appeared in various publications over the centuries, starting in 1718 with a book of Kepler's letters by Michael Hansch, but in 1957 it was presented for the first time as a long-lost mechanical calculator by Dr. Franz Hammer. The building of the first replica in the 1960s showed that Schickard's machine had an unfinished design and therefore wheels and springs were added to make it work. The use of these replicas showed that the single-tooth wheel, when used within a calculating clock, was an inadequate carry mechanism.. This did not mean that such a machine could not be used in practice, but the operator when faced with the mechanism resisting rotation, in the unusual circumstances of a carry being required beyond 3 dials, would need to "help" the subsequent carry to propagate.
  • Around 1643, a French clockmaker from Rouen, after hearing of Pascal's work, built what he claimed to be a calculating clock of his own design. Pascal fired all his employees and stopped developing his calculator as soon as he heard of the news. It is only after being assured that his invention would be protected by a royal privilege that he restarted his activity. A careful examination of this calculating clock showed that it didn't work properly and Pascal called it an avorton.
  • In 1659, the Italian Tito Livio Burattini built a machine with nine independent wheels, each one of these wheels was paired with a smaller carry wheel. At the end of an operation the user had to either manually add each carry to the next digit or mentally add these numbers to create the final result.
  • In 1666, Samuel Morland invented a machine designed to add sums of money, but it was not a true adding machine since the carry was added to a small carry wheel situated above each digit and not directly to the next digit. It was very similar to Burattini's machine. Morland created also a multiplying machines with interchangeable disks based on Napier's bones. Taken together these two machines provided a capacity similar to that of the invention of Schickard, although it is doubtful that Morland ever encountered Schickard's calculating clock.
  • In 1673, the French clockmaker René Grillet described in Curiositez mathématiques de l'invention du Sr Grillet, horlogeur à Paris a calculating machine that would be more compact than Pascal's calculator and reversible for subtraction. The only two Grillet machines known have no carry mechanism, displaying three lines of nine independent dials they also have nine rotating napier's rod for multiplication and division. Contrary to Grillet's claim, it was not a mechanical calculator after all.