Mangrove


A mangrove is a shrub or tree that grows mainly in coastal saline or brackish water. Mangroves grow in an equatorial climate, typically along coastlines and tidal rivers. They have particular adaptations to take in extra oxygen and remove salt, allowing them to tolerate conditions that kill most plants. The term is also used for tropical coastal vegetation consisting of such species. Mangroves are taxonomically diverse due to convergent evolution in several plant families. They occur worldwide in tropical and subtropical coastal areas, mainly between latitudes 30° N and 30° S, with the greatest mangrove area within 5° of the equator. Mangrove plant families first appeared during the Late Cretaceous to Paleocene epochs and became widely distributed in part due to the movement of tectonic plates. The oldest known fossils of mangrove palm date to 75 million years ago.
Mangroves are salt-tolerant and are adapted to live in harsh coastal conditions. They contain a complex salt filtration system and a complex root system to cope with saltwater immersion and wave action. They are adapted to the low-oxygen conditions of waterlogged mud, but are most likely to thrive in the upper half of the intertidal zone.
The mangrove biome, often called the mangrove forest or mangal, is a distinct saline woodland or shrubland habitat characterized by depositional coastal environments, where fine sediments collect in areas protected from high-energy wave action. The saline conditions tolerated by various mangrove species range from brackish water, through pure seawater, to water concentrated by evaporation to over twice the salinity of ocean seawater.
Beginning in 2010, remote sensing technologies and global data have been used to assess areas, conditions and deforestation rates of mangroves around the world. In 2018, the Global Mangrove Watch Initiative released a new global baseline which estimates the total mangrove forest area of the world as of 2010 at, spanning 118 countries and territories. A 2022 study on losses and gains of tidal wetlands estimates a net decrease in global mangrove extent from 1999 to 2019. Mangrove loss continues due to human activity, with a global annual deforestation rate estimated at 0.16%, and per-country rates as high as 0.70%. Degradation in quality of remaining mangroves is also an important concern.
There is interest in mangrove restoration for several reasons. Mangroves support sustainable coastal and marine ecosystems. They protect nearby areas from tsunamis and extreme weather events. Mangrove forests are also effective at carbon sequestration and storage. The success of mangrove restoration may depend heavily on engagement with local stakeholders, and on careful assessment to ensure that growing conditions will be suitable for the species chosen.
The International Day for the Conservation of the Mangrove Ecosystem is celebrated every year on 26 July.

Etymology

Etymology of the English term mangrove is speculative and disputed.
The term may have come to English from the Portuguese mangue or the Spanish
mangle. Further back, it may be traced to South America and Cariban and Arawakan languages such as Taíno. Other possibilities include the Malay language manggi-manggi.
The English usage may reflect a corruption via folk etymology of the words mangrow and grove.
The word "mangrove" is used in at least three senses:
  • Most broadly to refer to the habitat and entire plant assemblage or mangal, for which the terms mangrove forest biome and mangrove swamp are also used;
  • To refer to all trees and large shrubs in a mangrove swamp; and
  • Narrowly to refer only to mangrove trees of the genus Rhizophora of the family Rhizophoraceae.

    Biology

According to Hogarth, among the recognized mangrove species there are about 70 species in 20 genera from 16 families that constitute the "true mangroves" – species that occur almost exclusively in mangrove habitats. Demonstrating convergent evolution, many of these species found similar solutions to the tropical conditions of variable salinity, tidal range, anaerobic soils, and intense sunlight. Plant biodiversity is generally low in a given mangrove. The greatest biodiversity of mangroves occurs in Southeast Asia, particularly in the Indonesian archipelago.

Adaptations to low oxygen

The red mangrove survives in the most inundated areas, props itself above the water level with stilt or prop roots and then absorbs air through lenticels in its bark.
The black mangrove lives on higher ground and develops many specialized root-like structures called pneumatophores, which stick up out of the soil like straws for breathing.
These "breathing tubes" typically reach heights of up to, and in some species, over. The roots also contain wide aerenchyma to facilitate transport within the plants.

Nutrient uptake

Because the soil is perpetually waterlogged, little free oxygen is available. Anaerobic bacteria liberate nitrogen gas, soluble ferrum, inorganic phosphates, sulfides, and methane, which make the soil much less nutritious. Pneumatophores allow mangroves to absorb gases directly from the atmosphere, and other nutrients such as iron, from the inhospitable soil. Mangroves store gases directly inside the roots, processing them even when the roots are submerged during high tide.

Limiting salt intake

Red mangroves exclude salt by having significantly impermeable roots that are highly suberised, acting as an ultrafiltration mechanism to exclude sodium salts from the rest of the plant. One study found that roots of the Indian mangrove Avicennia officinalis exclude 90% to 95% of the salt in water taken up by the plant, depositing the excluded salt in the cortex of the root. An increase in the production of suberin and in the activity of a gene regulating cytochrome P450 were observed in correlation with an increase in the salinity of the water to which the plant was exposed. In a frequently cited concept that has become known as the "sacrificial leaf", salt which does accumulate in the shoot then concentrates in old leaves, which the plant then sheds. However, recent research on the Red mangrove Rhizophora mangle suggests that the older, yellowing leaves have no more measurable salt content than the other, greener leaves.

Limiting water loss

Because of the limited fresh water available in salty intertidal soils, mangroves limit the amount of water they lose through their leaves. They can restrict the opening of their stomata. They also vary the orientation of their leaves to avoid the harsh midday sun and so reduce evaporation from the leaves. A captive red mangrove grows only if its leaves are misted with fresh water several times a week, simulating frequent tropical rainstorms.

Filtration of seawater

A 2016 study by Kim et al. investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis and most Na+ ions are filtered at the first sublayer of the outermost layer. The high blockage of Na+ ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na+ ion filtration. The study provides insights into the mechanism underlying water filtration through halophyte roots and could serve as a basis for the development of a bio-inspired method of desalination.
Uptake of Na+ ions is desirable for halophytes to build up osmotic potential, absorb water and sustain turgor pressure. However, excess Na+ ions may work on toxic element. Therefore, halophytes try to adjust salinity delicately between growth and survival strategies. In this point of view, a novel sustainable desalination method can be derived from halophytes, which are in contact with saline water through their roots. Halophytes exclude salt through their roots, secrete the accumulated salt through their aerial parts and sequester salt in senescent leaves and/or the bark. Mangroves are facultative halophytes and Bruguiera is known for its special ultrafiltration system that can filter approximately 90% of Na+ions from the surrounding seawater through the roots. The species also exhibits a high rate of salt rejection. The water-filtering process in mangrove roots has received considerable attention for several decades. Morphological structures of plants and their functions have been evolved through a long history to survive against harsh environmental conditions.

Increasing survival of offspring

In this harsh environment, mangroves have evolved a special mechanism to help their offspring survive. Mangrove seeds are buoyant and are therefore suited to water dispersal. Unlike most plants, whose seeds germinate in soil, many mangroves are viviparous, meaning their seeds germinate while still attached to the parent tree. Once germinated, the seedling grows either within the fruit, or out through the fruit to form a propagule which can produce its own food via photosynthesis.
The mature propagule then drops into the water, which can transport it great distances. Propagules can survive desiccation and remain dormant for over a year before arriving in a suitable environment. Once a propagule is ready to root, its density changes so that the elongated shape now floats vertically rather than horizontally. In this position, it is more likely to lodge in the mud and root. If it does not root, it can alter its density and drift again in search of more favorable conditions.