Tidal river
A tidal river is a river whose flow and level are caused by tides. A section of a larger river affected by the tides is a tidal reach, but it may sometimes be considered a tidal river if it had been given a separate and another title name.
Generally, tidal rivers are short rivers with relatively low discharge rates but high overall discharge, which generally implies a shallow river with a large coastal mouth. In some cases, high tides impound downstream flowing freshwater, reversing the flow and increasing the water level of the lower section of river, forming large estuaries. High tides can be noticed as far as upstream. Oregon's Coquille River is one such stream for which that effect can be noticed.
Overview
The area of a tidal river can be difficult to define. The term "tidal river" generally encompasses the area upriver of the maximum limit of salinity intrusion and downriver of tidal water level fluctuations. This classification is based on both tidal trends and salinity. By this definition, a tidal river will be affected by tides, surges, and sea level variation, though its water may not have a high salinity content. If that is the case, this section of river can be known as a "tidal freshwater river" or a "river reach". In terms of tides, tidal rivers are classified as microtidal, mesotidal, and macrotidal. Areas of brackish water seaward of the tidal river section are often called estuaries. A phenomenon commonly associated with tidal rivers is a tidal bore, where a wall of water travels upriver during a flood tide.Freshwater tidal rivers discharge large amounts of sediment and nutrients into the ocean. This is a necessary influx for the global water balance. Rivers contribute about 95% of sediment entering the ocean. Discharge estimates from freshwater tidal rivers are important for informing water resource management and climate analyses. These discharge amounts can be estimated using tidal statistics. Some challenges to estimating discharge amounts include reversing tidal flow, compensation flow for Stokes drift, spring-neap water storage effects, lateral circulation, and multiple distributaries or ebb and flood channels.