Lunar lander
A lunar lander or Moon lander is a spacecraft designed to land on the surface of the Moon. As of 2024, the Apollo Lunar Module is the only lunar lander to have ever been used in human spaceflight, completing six lunar landings from 1969 to 1972 during the United States' Apollo Program. Several robotic landers have reached the surface, and some have returned samples to Earth.
The design requirements for these landers depend on factors imposed by the payload, flight rate, propulsive requirements, and configuration constraints. Other important design factors include overall energy requirements, mission duration, the type of mission operations on the lunar surface, and life support system if crewed. The relatively high gravity and lack of lunar atmosphere negates the use of aerobraking, so a lander must use propulsion to decelerate and achieve a soft landing.
History
1958–1976
The Luna program was a series of robotic impactors, flybys, orbiters, and landers flown by the Soviet Union between 1958 and 1976. Luna 9 was the first spacecraft to achieve a soft landing on the Moon on February 3, 1966, after 11 unsuccessful attempts. Three Luna Spacecraft returned lunar soil samples to Earth from 1972 to 1976. Two other Luna spacecraft soft-landed the Lunokhod robotic lunar rover in 1970 and 1973. Luna achieved a total of seven successful soft-landings out of 27 landing attempts.The United States' Surveyor program first soft-landed Surveyor 1 on June 2, 1966, this initial success was followed by four additional successful soft-landings, the last occurring on January 10, 1968. The Surveyor program achieved a total of five successful soft landings out of seven landing attempts through January 10, 1968. Surveyor 6 even did a brief hop off the lunar surface.
The Apollo Lunar Module was the lunar lander for the United States' Apollo program. As of 2025, it is the only crewed lunar lander. The Apollo program completed six successful lunar soft-landings from 1969 until 1972; a seventh lunar landing attempt by the Apollo program was aborted when Apollo 13's service module suffered explosive venting from its oxygen tanks.
The LK lunar module was the lunar lander developed by the Soviet Union as a part of several Soviet crewed lunar programs. Several LK lunar modules were flown without crew in low Earth orbit, but the LK lunar module never flew to the Moon, as the development of the N1 Rocket Launch Vehicle required for the lunar flight suffered setbacks, and after the first human Moon landings were achieved by the United States, the Soviet Union cancelled both the N1 Rocket and the LK Lunar Module programs without any further development.
2013–2023
The Chinese Lunar Exploration Program includes robotic lander, rover, and sample-return components; the program realized an initial successful lunar soft-landing with the Chang'e 3 spacecraft on 14 December 2013. As of 2023, the CLEP has achieved three successful soft-landings out of three landing attempts, namely Chang'e 3, Chang'e 4 and Chang'e 5.Chang'e 4 made history by making humanity's first ever soft-landing on the far side of the Moon.
Israel's SpaceIL attempted a robotic lunar landing by its Beresheet lander on 4 April 2019; the attempt failed. As of 2023, SpaceIL has plans for another soft-landing attempt using a follow-up robotic lander named Beresheet 2.
India's Chandrayaan Programme conducted an unsuccessful robotic lunar soft-landing attempt on 6 September 2019 as part of its Chandrayaan-2 spacecraft with the lander crashing on the Moon's surface. On 23 August 2023, the program's follow-up Chandrayaan-3 lander achieved India's first robotic soft-landing and later conducted a brief hop on 3 September 2023 to test technologies required for Indian lunar sample return mission called Chandrayaan-4.
Japan's ispace attempted a lunar soft-landing by its Hakuto-R Mission 1 robotic lander on 25 April 2023. The attempt was unsuccessful and the lander crashed into the lunar surface. The company attempted another landing attempt in 2025, but that also failed.
Russia's Luna-Glob program, the successor program to the Soviet Union's Luna program, launched the Luna 25 lunar lander on 10 August 2023; the probe's intended destination was near the lunar south pole, but on 19 August 2023 the lander crashed on the Moon's surface.
Japan's Smart Lander for Investigating Moon made a successful lunar landing with wrong attitude, bleak signal bandwidth and even after losing one of its engines during descent but within of its landing spot on 19 January 2024. It carried two small LEV rovers on board deployed separately, just before SLIM's touchdown. Its landing made Japan the 5th country to soft land on the Moon.
2024
In January 2024, the first mission of the NASA-funded CLPS program, Peregrine Mission One, suffered a fuel leak several hours after launch, resulting in losing the ability to maintain attitude control and charge its battery, thereby preventing it from reaching lunar orbit and precluding a landing attempt. The probe subsequently burnt up in Earth's atmosphere.The second CLPS probe Odysseus landed successfully on 22 February 2024 on the Moon, marking the United States' first unmanned lunar soft-landing in over 50 years. This mission is the first private-NASA partnership to land on the Moon and the first landing using cryogenic propellants. However, the mission experienced some anomalies, including tipping-over on one side on the lunar surface; an off-nominal initial lunar orbit, a non-functioning landing LIDAR instrument, and apparently low communication bandwidth. Later it was revealed that, though it landed successfully, one of the lander's legs broke upon landing and it tilted up on other side, 18° due to landing on a slope, but the lander survived and payloads are functioning as expected. EagleCam was not ejected prior to landing. It was later ejected on 28 February but partially failed as it returned all types of data, except post IM-1 landing images, the main aim of its mission.
China launched Chang'e 6 from China's Hainan Island on 3 May 2024; this mission seeks to conduct the first lunar sample return from the far side of the Moon. This is China's second lunar sample return mission, the first was successfully completed by Chang'e 5 when it returned 1.731 kg of lunar near side material to the Earth on 16 December 2020. The Chang'e 6 lander successfully landed in the South pole-Aitken basin on the lunar far side at 22:23 UTC on 1 June 2024. After the completion of sample collection and the placement of the sample on the ascender by the probe's robotic drill and robotic arm, the ascender successfully took off from atop the lander portion of the probe at 23:38 UTC on 3 June 2024. The ascender docked with the Chang'e 6 service module in lunar orbit at 06:48 UTC on 6 June 2024 and subsequently completed the transfer of the sample container to the Earth rentry module at 07:24 UTC on the same day. The orbiter then left lunar orbit on 20 June 2024 with the returner, which landed in Inner Mongolia on 25 June 2024, completing China's lunar far side sample return mission.
2025
's lunar lander Blue Ghost Mission 1, carrying NASA-sponsored experiments and commercial payloads as a part of Commercial Lunar Payload Services program to Mare Crisium, was launched on 15 January 2025 on a Falcon 9 launch vehicle with Hakuto-R Mission 2 and successfully landed on 2 March 2025.The second mission of the Hakuto-R program by ispace, Hakuto-R Mission 2, carrying the RESILIENCE lunar lander and TENACIOUS micro rover, was launched on 15 January 2025 on a Falcon 9 launch vehicle with Blue Ghost M1 lander. Landing is expected in Mare Frigoris around May–June 2025. Hakuto-R Mission 2 apparently crashed during its landing attempt on 5 June 2025.
Intuitive Machines's lunar lander IM-2, carrying NASA-sponsored experiments and commercial rovers and payloads as a part of Commercial Lunar Payload Services program to Mons Mouton, was launched on 27 February 2025 on a Falcon 9 launch vehicle with Brokkr-2 and Lunar Trailblazer. IM-2 landed on 6 March 2025. The spacecraft was intact after touchdown but resting on its side, thereby complicating its planned science and technology demonstration mission; this outcome is similar to what occurred with the company's IM-1 Odysseus spacecraft in 2024. On March 13, Intuitive Machines shared that, like on the IM-1 mission, the Athena
Japan's ispace attempted a lunar soft-landing on 5 June 2025. The attempt to land in Mare Frigoris, was unsuccessful and the lander, Hakuto-R Mission 2, crashed into the lunar surface.
Landing outcomes
The following table details the success rates of past and on-going lunar soft-landing attempts by robotic and crewed lunar-landing programs. Landing programs which have not launched any probes are not included in the table; they are added as their initial robotic and/or crewed landers are launched from Earth.The term landing attempt as used here includes any mission that was launched with the intent to land on the Moon, including all missions which failed to reach lunar orbit for any reason. A landing attempt by a spacecraft is classified as full success if it lands intact on the Moon and is situated in its designed orientation/attitude and fully functional, while a partial success occurs when a spacecraft lands intact on the Moon but its in-situ operations is compromised as a result of the landing process for any reason; a failure occurs when neither full success nor partial success has been achieved by the spacecraft.
| Program | Country/Orgs. | Time-span | Type | Landing attempts | Full success | Partial success | Failure | Notes |
| Luna | ![]() |
