List of geometers
A geometer or geometrician is a mathematician who specializes in geometry.
Some notable geometers and their main fields of work, chronologically listed, are:
1000 BCE to 1 BCE
- Baudhayana – Euclidean geometry
- Manava – Euclidean geometry
- Thales of Miletus – Euclidean geometry
- Pythagoras – Euclidean geometry, Pythagorean theorem
- Zeno of Elea – Euclidean geometry
- Hippocrates of Chios – first systematically organized Stoicheia – Elements
- Mozi
- Plato
- Theaetetus
- Autolycus of Pitane – astronomy, spherical geometry
- Euclid – Elements, Euclidean geometry
- Apollonius of Perga – Euclidean geometry, conic sections
- Archimedes – Euclidean geometry
- Eratosthenes – Euclidean geometry
- Katyayana – Euclidean geometry
1–1300 AD
- Hero of Alexandria – Euclidean geometry
- Pappus of Alexandria – Euclidean geometry, projective geometry
- Hypatia of Alexandria – Euclidean geometry
- Brahmagupta – Euclidean geometry, cyclic quadrilaterals
- Vergilius of Salzburg – Irish bishop of Aghaboe, Ossory and later Salzburg, Austria; antipodes, and astronomy
- Al-Abbās ibn Said al-Jawharī
- Thabit ibn Qurra – analytic geometry, non-Euclidean geometry, conic sections
- Abu'l-Wáfa – spherical geometry, spherical triangles
- Ibn al-Haytham
- Omar Khayyam – algebraic geometry, conic sections
- Ibn Maḍāʾ
1301–1800 AD
- Piero della Francesca
- Leonardo da Vinci – Euclidean geometry
- Jyesthadeva – Euclidean geometry, cyclic quadrilaterals
- Marin Getaldić
- Jacques-François Le Poivre – projective geometry
- Johannes Kepler –
- Edmund Gunter
- Girard Desargues – projective geometry; Desargues' theorem
- René Descartes – invented the methodology of analytic geometry, also called Cartesian geometry after him
- Pierre de Fermat – analytic geometry
- Blaise Pascal – projective geometry
- Christiaan Huygens – evolute
- Giordano Vitale
- Philippe de La Hire – projective geometry
- Isaac Newton – 3rd-degree algebraic curve
- Giovanni Ceva – Euclidean geometry
- Johann Jacob Heber – surveyor and geometer
- Giovanni Gerolamo Saccheri – non-Euclidean geometry
- Leonhard Euler
- Tobias Mayer
- Johann Heinrich Lambert – non-Euclidean geometry
- Gaspard Monge – descriptive geometry
- John Playfair – Euclidean geometry
- Lazare Nicolas Marguerite Carnot – projective geometry
- Joseph Diaz Gergonne – projective geometry; Gergonne point
- Carl Friedrich Gauss – Theorema Egregium
- Louis Poinsot
- Siméon Denis Poisson
- Jean-Victor Poncelet – projective geometry
- Augustin-Louis Cauchy
- August Ferdinand Möbius – Euclidean geometry
- Nikolai Ivanovich Lobachevsky – hyperbolic geometry, a non-Euclidean geometry
- Michel Chasles – projective geometry
- Germinal Dandelin – Dandelin spheres in conic sections
- Jakob Steiner – champion of synthetic geometry methodology, projective geometry, Euclidean geometry
1801–1900 AD
- Karl Wilhelm Feuerbach – Euclidean geometry
- Julius Plücker
- János Bolyai – hyperbolic geometry, a non-Euclidean geometry
- Christian Heinrich von Nagel – Euclidean geometry
- Johann Benedict Listing – topology
- Hermann Günther Grassmann – exterior algebra
- Ludwig Otto Hesse – algebraic invariants and geometry
- Ludwig Schlafli – Regular 4-polytope
- Pierre Ossian Bonnet – differential geometry
- Arthur Cayley
- Joseph Bertrand
- Delfino Codazzi – differential geometry
- Bernhard Riemann – elliptic geometry and Riemannian geometry
- Julius Wilhelm Richard Dedekind
- Ludwig Burmester – theory of linkages
- Edmund Hess
- Albert Victor Bäcklund
- Max Noether – algebraic geometry
- Henri Brocard – Brocard points
- William Kingdon Clifford – geometric algebra
- Pieter Hendrik Schoute
- Felix Klein
- Sofia Vasilyevna Kovalevskaya
- Evgraf Fedorov
- Henri Poincaré
- Luigi Bianchi – differential geometry
- Alicia Boole Stott
- Hermann Minkowski – non-Euclidean geometry
- Henry Frederick Baker – algebraic geometry
- Élie Cartan
- Dmitri Egorov – differential geometry
- Veniamin Kagan
- Raoul Bricard – descriptive geometry
- Ernst Steinitz – Steinitz's theorem
- Marcel Grossmann
- Oswald Veblen – projective geometry, differential geometry
- Nathan Altshiller Court – author of College Geometry
- Emmy Noether – algebraic topology
- Harry Clinton Gossard
- Arthur Rosenthal
- Helmut Hasse – algebraic geometry
1901–present
- William Vallance Douglas Hodge
- Patrick du Val
- Beniamino Segre – combinatorial geometry
- J. C. P. Miller
- André Weil – Algebraic geometry
- H. S. M. Coxeter – theory of polytopes, non-Euclidean geometry, projective geometry
- J. A. Todd
- Daniel Pedoe
- Shiing-Shen Chern – differential geometry
- Ernst Witt
- Rafael Artzy
- Aleksandr Danilovich Aleksandrov
- László Fejes Tóth
- Edwin Evariste Moise
- Aleksei Pogorelov – differential geometry
- Magnus Wenninger – polyhedron models
- Jean-Louis Koszul
- Isaak Yaglom
- Eugenio Calabi
- Benoit Mandelbrot – fractal geometry
- Katsumi Nomizu – affine differential geometry
- Michael S. Longuet-Higgins
- John Leech
- Alexander Grothendieck – algebraic geometry
- Branko Grünbaum – discrete geometry
- Michael Atiyah
- Lev Semenovich Pontryagin
- Geoffrey Colin Shephard
- Norman W. Johnson
- John Milnor
- Roger Penrose
- Yuri Manin – algebraic geometry and diophantine geometry
- Vladimir Arnold – algebraic geometry
- Ernest Vinberg
- J. H. Conway – sphere packing, recreational geometry
- Robin Hartshorne – geometry, algebraic geometry
- Phillip Griffiths – algebraic geometry, differential geometry
- Enrico Bombieri – algebraic geometry
- Robert Williams
- Peter McMullen
- Richard S. Hamilton – differential geometry, Ricci flow, Poincaré conjecture
- Mikhail Gromov
- Rudy Rucker
- William Thurston
- Shing-Tung Yau
- Michael Freedman
- Egon Schulte – polytopes
- George W. Hart – sculptor
- Károly Bezdek – discrete geometry, sphere packing, Euclidean geometry, non-Euclidean geometry
- Simon Donaldson
- Kenji Fukaya – symplectic geometry
- Yong-Geun Oh
- Toshiyuki Kobayashi
- Hiraku Nakajima – representation theory and geometry
- Hwang Jun-Muk – algebraic geometry, differential geometry
- Grigori Perelman – Poincaré conjecture
- Maryam Mirzakhani
- Denis Auroux
Geometers in art