Kalman filter


In statistics and control theory, Kalman filtering is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, to produce estimates of unknown variables that tend to be more accurate than those based on a single measurement, by estimating a joint probability distribution over the variables for each time-step. The filter is constructed as a mean squared error minimiser, but an alternative derivation of the filter is also provided showing how the filter relates to maximum likelihood statistics. The filter is named after Rudolf E. Kálmán.
Kalman filtering has numerous technological applications. A common application is for guidance, navigation, and control of vehicles, particularly aircraft, spacecraft and ships positioned dynamically. Furthermore, Kalman filtering is much applied in time series analysis tasks such as signal processing and econometrics. Kalman filtering is also important for robotic motion planning and control, and can be used for trajectory optimization. Kalman filtering also works for modeling the central nervous system's control of movement. Due to the time delay between issuing motor commands and receiving sensory feedback, the use of Kalman filters provides a realistic model for making estimates of the current state of a motor system and issuing updated commands.
The algorithm works via a two-phase process: a prediction phase and an update phase. In the prediction phase, the Kalman filter produces estimates of the current state variables, including their uncertainties. Once the outcome of the next measurement is observed, these estimates are updated using a weighted average, with more weight given to estimates with greater certainty. The algorithm is recursive. It can operate in real time, using only the present input measurements and the state calculated previously and its uncertainty matrix; no additional past information is required.
Optimality of Kalman filtering assumes that errors have a normal distribution. In the words of Rudolf E. Kálmán, "The following assumptions are made about random processes: Physical random phenomena may be thought of as due to primary random sources exciting dynamic systems. The primary sources are assumed to be independent gaussian random processes with zero mean; the dynamic systems will be linear." Regardless of Gaussianity, however, if the process and measurement covariances are known, then the Kalman filter is the best possible linear estimator in the minimum mean-square-error sense, although there may be better nonlinear estimators. It is a common misconception that the Kalman filter cannot be rigorously applied unless all noise processes are assumed to be Gaussian.
Extensions and generalizations of the method have also been developed, such as the extended Kalman filter and the unscented Kalman filter which work on nonlinear systems. The basis is a hidden Markov model such that the state space of the latent variables is continuous and all latent and observed variables have Gaussian distributions. Kalman filtering has been used successfully in multi-sensor fusion, and distributed sensor networks to develop distributed or consensus Kalman filtering.

History

The filtering method is named for Hungarian émigré Rudolf E. Kálmán, although Thorvald Nicolai Thiele and Peter Swerling developed a similar algorithm earlier. Richard S. Bucy of the Johns Hopkins Applied Physics Laboratory contributed to the theory, causing it to be known sometimes as Kalman–Bucy filtering. Kalman was inspired to derive the Kalman filter by applying state variables to the Wiener filtering problem.
Stanley F. Schmidt is generally credited with developing the first implementation of a Kalman filter. He realized that the filter could be divided into two distinct parts, with one part for time periods between sensor outputs and another part for incorporating measurements. It was during a visit by Kálmán to the NASA Ames Research Center that Schmidt saw the applicability of Kálmán's ideas to the nonlinear problem of trajectory estimation for the Apollo program resulting in its incorporation in the Apollo navigation computer.
This digital filter is sometimes termed the Stratonovich–Kalman–Bucy filter because it is a special case of a more general, nonlinear filter developed by the Soviet mathematician Ruslan Stratonovich. In fact, some of the special case linear filter's equations appeared in papers by Stratonovich that were published before the summer of 1961, when Kalman met with Stratonovich during a conference in Moscow.
This Kalman filtering was first described and developed partially in technical papers by Swerling, Kalman and Kalman and Bucy.
Kalman filters have been vital in the implementation of the navigation systems of U.S. Navy nuclear ballistic missile submarines, and in the guidance and navigation systems of cruise missiles such as the U.S. Navy's Tomahawk missile and the U.S. Air Force's Air Launched Cruise Missile. They are also used in the guidance and navigation systems of reusable launch vehicles and the attitude control and navigation systems of spacecraft which dock at the International Space Station.

Overview of the calculation

Kalman filtering uses a system's dynamic model, known control inputs to that system, and multiple sequential measurements to form an estimate of the system's varying quantities that is better than the estimate obtained by using only one measurement alone. As such, it is a common sensor fusion and data fusion algorithm.
Noisy sensor data, approximations in the equations that describe the system evolution, and external factors that are not accounted for, all limit how well it is possible to determine the system's state. The Kalman filter deals effectively with the uncertainty due to noisy sensor data and, to some extent, with random external factors. The Kalman filter produces an estimate of the state of the system as an average of the system's predicted state and of the new measurement using a weighted average. The purpose of the weights is that values with better estimated uncertainty are "trusted" more. The weights are calculated from the covariance, a measure of the estimated uncertainty of the prediction of the system's state. The result of the weighted average is a new state estimate that lies between the predicted and measured state, and has a better estimated uncertainty than either alone. This process is repeated at every time step, with the new estimate and its covariance informing the prediction used in the following iteration. This means that Kalman filter works recursively and requires only the last "best guess", rather than the entire history, of a system's state to calculate a new state.
The measurements' certainty-grading and current-state estimate are important considerations. It is common to discuss the filter's response in terms of the Kalman filter's gain. The Kalman gain is the weight given to the measurements and current-state estimate, and can be "tuned" to achieve a particular performance. With a high gain, the filter places more weight on the most recent measurements, and thus conforms to them more responsively. With a low gain, the filter conforms to the model predictions more closely. At the extremes, a high gain will result in a more jumpy estimated trajectory, while a low gain will smooth out noise but decrease the responsiveness.
When performing the actual calculations for the filter, the state estimate and covariances are coded into matrices because of the multiple dimensions involved in a single set of calculations. This allows for a representation of linear relationships between different state variables in any of the transition models or covariances.

Example application

As an example application, consider the problem of determining the precise location of a truck. The truck can be equipped with a GPS unit that provides an estimate of the position within a few meters. The GPS estimate is likely to be noisy; readings 'jump around' rapidly, though remaining within a few meters of the real position. In addition, since the truck is expected to follow the laws of physics, its position can also be estimated by integrating its velocity over time, determined by keeping track of wheel revolutions and the angle of the steering wheel. This is a technique known as dead reckoning. Typically, the dead reckoning will provide a very smooth estimate of the truck's position, but it will drift over time as small errors accumulate.
For this example, the Kalman filter can be thought of as operating in two distinct phases: predict and update. In the prediction phase, the truck's old position will be modified according to the physical laws of motion. Not only will a new position estimate be calculated, but also a new covariance will be calculated as well. Perhaps the covariance is proportional to the speed of the truck because we are more uncertain about the accuracy of the dead reckoning position estimate at high speeds but very certain about the position estimate at low speeds. Next, in the update phase, a measurement of the truck's position is taken from the GPS unit. Along with this measurement comes some amount of uncertainty, and its covariance relative to that of the prediction from the previous phase determines how much the new measurement will affect the updated prediction. Ideally, as the dead reckoning estimates tend to drift away from the real position, the GPS measurement should pull the position estimate back toward the real position but not disturb it to the point of becoming noisy and rapidly jumping.

Technical description and context

The Kalman filter is an efficient recursive filter estimating the internal state of a linear dynamic system from a series of noisy measurements. It is used in a wide range of engineering and econometric applications from radar and computer vision to estimation of structural macroeconomic models, and is an important topic in control theory and control systems engineering. Together with the linear-quadratic regulator, the Kalman filter solves the linear–quadratic–Gaussian control problem. The Kalman filter, the linear-quadratic regulator, and the linear–quadratic–Gaussian controller are solutions to what arguably are the most fundamental problems of control theory.
In most applications, the internal state is much larger than the few "observable" parameters which are measured. However, by combining a series of measurements, the Kalman filter can estimate the entire internal state.
For the Dempster–Shafer theory, each state equation or observation is considered a special case of a linear belief function and the Kalman filtering is a special case of combining linear belief functions on a join-tree or Markov tree. Additional methods include belief filtering which use Bayes or evidential updates to the state equations.
A wide variety of Kalman filters exists by now: Kalman's original formulation - now termed the "simple" Kalman filter, the Kalman–Bucy filter, Schmidt's "extended" filter, the information filter, and a variety of "square-root" filters that were developed by Bierman, Thornton, and many others. Perhaps the most commonly used type of very simple Kalman filter is the phase-locked loop, which is now ubiquitous in radios, especially frequency modulation radios, television sets, satellite communications receivers, outer space communications systems, and nearly any other electronic communications equipment.