Inert gas
An inert gas is a gas that does not readily undergo chemical reactions with other chemical substances and therefore does not readily form chemical compounds. Though inert gases have a variety of applications, they are generally used to prevent unwanted chemical reactions with the oxygen and moisture in the air from degrading a sample. Generally, nitrogen, carbon dioxide, and all noble gases except oganesson are considered inert gases. The term inert gas is context-dependent because several of the inert gases, including nitrogen and carbon dioxide, can be made to react under certain conditions.
Purified argon gas is the most commonly used inert gas due to its high natural abundance and low relative cost.
Unlike noble gases, an inert gas is not necessarily elemental and is often a compound gas. Like the noble gases, the tendency for non-reactivity is due to the valence, the outermost electron shell, being complete in all the inert gases. This is a tendency, not a rule, as all noble gases and other "inert" gases can react to form compounds under some conditions.
Need and necessity
The inert gases are obtained by fractional distillation of air, with the exception of helium which is separated from a few natural gas sources rich in this element, through cryogenic distillation or membrane separation. For specialized applications, purified inert gas shall be produced by specialized generators on-site. They are often used by chemical tankers and product carriers. Benchtop specialized generators are also available for laboratories.Applications of inert gas
Because of the non-reactive properties of inert gases, they are often useful to prevent undesirable chemical reactions from taking place. Food is packed in an inert gas to remove oxygen gas. This prevents bacteria from growing. It also prevents chemical oxidation by oxygen in normal air. An example is the rancidification of edible oils. In food packaging, inert gases are used as a passive preservative, in contrast to active preservatives like sodium benzoate or BHT.Historical documents may also be stored under inert gas to avoid degradation. For example, the original documents of the U.S. Constitution are stored under humidified argon. Helium was previously used, but it was less suitable because it diffuses out of the case more quickly than argon.
Inert gases are often used in the chemical industry. In a chemical manufacturing plant, reactions can be conducted under inert gas to minimize fire hazards or unwanted reactions. In such plants and in oil refineries, transfer lines and vessels can be purged with inert gas as a fire and explosion prevention measure. At the bench scale, chemists perform experiments on air-sensitive compounds using air-free techniques developed to handle them under inert gas. Helium, neon, argon, krypton, xenon, and radon are inert gases.
Inert gas systems on ships
Inert gas is produced on board crude oil carriers by burning kerosene in a dedicated inert gas generator. The inert gas system is used to prevent the atmosphere in cargo tanks or bunkers from coming into the explosive range. Inert gases keep the oxygen content of the tank atmosphere below 5%, thus making any air/hydrocarbon gas mixture in the tank too rich to ignite. Inert gases are most important during discharging and during the ballast voyage when more hydrocarbon vapor is likely to be present in the tank atmosphere. Inert gas can also be used to purge the tank of the volatile atmosphere in preparation for gas freeing - replacing the atmosphere with breathable air - or vice versa.The flue gas system uses the boiler exhaust as its source, so it is important that the fuel/air ratio in the boiler burners is properly regulated to ensure that high-quality inert gases are produced. Too much air would result in an oxygen content exceeding 5%, and too much fuel oil would result in the carryover of dangerous hydrocarbon gas.
The flue gas is cleaned and cooled by the scrubber tower. Various safety devices prevent overpressure, the return of hydrocarbon gas to the engine room, or having a supply of IG with too high oxygen content.
Gas tankers and product carriers cannot rely on flue gas systems and so use inert gas generators instead. The inert gas generator consists of a combustion chamber and scrubber unit supplied by fans and a refrigeration unit which cools the gas. A drier in series with the system removes moisture from the gas before it is supplied to the deck. Cargo tanks on gas carriers are not inerted, but the whole space around them is.