Hydrogen-like atom
A hydrogen-like atom is any atom or ion with a single electron. Examples of hydrogen-like atoms are H, He+, Li2+, Be3+ and so on, as well as any of their isotopes. These ions are isoelectronic with hydrogen and are sometimes called hydrogen-like ions. The non-relativistic Schrödinger equation and relativistic Dirac equation for the hydrogen atom and hydrogen-like atoms can be solved analytically, owing to the simplicity of the two-particle physical system. The one-electron wave function solutions are referred to as hydrogen-like atomic orbitals. Hydrogen-like atoms are of importance because their corresponding orbitals bear similarity to the hydrogen atomic orbitals.
The definition of hydrogen-like atoms can be extended to also include any system with only one valence electron. Examples such atoms include, but are not limited to, all alkali metals such as Rb and Cs and singly ionized alkaline earth metals such as Ca+ and Sr+. In such a case, the hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons, as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.
Other systems may also be referred to as "hydrogen-like atoms", such as muonium, positronium, certain exotic atoms, or Rydberg atoms.
Rydberg atoms
Highly excited states of neutral atoms are well described in terms of one electron around a nucleus of a single positive charge resembling a hydrogen atom. These states are called Rydberg atoms. They have important applications in astrophysics, including in the dynamics of the primordial gas of the Big Bang.The hydrogen-like approximation becomes poor for Rydberg atoms, even if they have only one valence electron, because the wavefunction of the valence electron is non-negligible in the ion core where the core electrons can no longer effectively screen the outer electrons.
As discussed below, the 1/r potential in the hydrogen atom leads to an electron binding energy given by
where is the Rydberg constant, is the Planck constant, is the speed of light and is the principal quantum number. For alkali atoms with small orbital angular momentum, the spectrum is still described well by the Rydberg formula with an angular momentum dependent quantum defect, :
The largest shifts occur when the orbital angular momentum is zero and these are shown in the table for the alkali metals:
| Element | Configuration | ||
| Li | 2s | 1.59 | 0.41 |
| Na | 3s | 1.63 | 1.37 |
| K | 4s | 1.77 | 2.23 |
| Rb | 5s | 1.81 | 3.19 |
| Cs | 6s | 1.87 | 4.13 |
Schrödinger solution
In the solution to the Schrödinger equation, which is non-relativistic, hydrogen-like atomic orbitals are eigenfunctions of the one-electron angular momentum operator and its z-component. A hydrogen-like atomic orbital is uniquely identified by the values of the principal quantum number, the angular momentum quantum number, and the magnetic quantum number. The energy eigenvalues do not depend on or, but solely on. To these must be added the two-valued spin quantum number, setting the stage for the Aufbau principle. This principle restricts the allowed values of the four quantum numbers in electron configurations of more-electron atoms. In hydrogen-like atoms all degenerate orbitals of fixed and, and varying between certain values form an atomic shell.The Schrödinger equation of atoms or ions with more than one electron has not been solved analytically, because of the computational difficulty imposed by the Coulomb interaction between the electrons. Numerical methods must be applied in order to obtain wavefunctions or other properties from quantum mechanical calculations. Due to the spherical symmetry, the total angular momentum of an atom is a conserved quantity. Many numerical procedures start from products of atomic orbitals that are eigenfunctions of the one-electron operators and. The radial parts of these atomic orbitals are sometimes numerical tables or are sometimes Slater orbitals. By angular momentum coupling many-electron eigenfunctions of are constructed.
In quantum chemical calculations hydrogen-like atomic orbitals cannot serve as an expansion basis, because they are not complete. The non-square-integrable continuum states must be included to obtain a complete set, i.e., to span all of one-electron Hilbert space. This was observed as early as 1928 by E. A. Hylleraas, and later by Harrison Shull and Per-Olov Löwdin.
In the simplest model, the atomic orbitals of hydrogen-like atoms/ions are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's law:
where
- is the permittivity of the vacuum,
- is the atomic number,
- is the elementary charge,
- is the distance of the electron from the nucleus.
, where are spherical harmonics, we arrive at the following Schrödinger equation:
where is, approximately, the mass of the electron, and is the reduced Planck constant.
Different values of give solutions with different angular momentum, where is the quantum number of the orbital angular momentum. The magnetic quantum number is the projection of the orbital angular momentum on the z-axis. See for the steps leading to the solution of this equation.
Non-relativistic wavefunction and energy
In addition to and, a third integer, emerges from the boundary conditions placed on. The functions and that solve the equations above depend on the values of these integers, called quantum numbers. It is customary to subscript the wave functions with the values of the quantum numbers they depend on. The final expression for the normalized wave function is:where:
- are the generalized Laguerre polynomials.
- where is the fine-structure constant. Here, is the reduced mass of the nucleus–electron system, that is,, where is the mass of the nucleus. Typically, the nucleus is much more massive than the electron, so . is the Bohr radius.
- function is a spherical harmonic.
Quantum numbers
The quantum numbers, and are integers and can have the following values:For a group-theoretical interpretation of these quantum numbers, see . Among other things, this article gives group-theoretical reasons why and.
Angular momentum
Each atomic orbital is associated with an angular momentum. It is a vector operator, and the eigenvalues of its square are given by:The projection of this vector onto an arbitrary direction is quantized. If the arbitrary direction is labelled 'z', the quantization is given by:
where is restricted as described above. Note that and commute and have a common eigenstate, which is in accordance with Heisenberg's uncertainty principle. Since and do not commute with, it is not possible to find a state that is an eigenstate of all three components simultaneously. Hence the values of the x- and y-components are not sharp, but are given by a probability function of finite width. The fact that the x- and y-components are not well-determined, implies that the direction of the angular momentum vector is not well determined either, although its component along the z-axis is sharp.
These relations do not give the total angular momentum of the electron. For that, electron spin must be included.
This quantization of angular momentum closely parallels that proposed by Niels Bohr in 1913, with no knowledge of wavefunctions.
Including spin–orbit interaction
In a real atom, the spin of a moving electron can interact with the electric field of the nucleus through relativistic effects, a phenomenon known as spin–orbit interaction. When one takes this coupling into account, the spin and the orbital angular momentum are no longer conserved, which can be pictured by the electron precessing. Therefore, one has to replace the quantum numbers, and the projection of the spin by quantum numbers that represent the total angular momentum, and, as well as the quantum number of parity.See the [|next section] on the Dirac equation for a solution that includes the coupling.
Solution to Dirac equation
In 1928 in England Paul Dirac found an equation that was fully compatible with special relativity. The equation was solved for hydrogen-like atoms the same year by the German Walter Gordon. Instead of a single function as in the Schrödinger equation, one must find four complex functions that make up a bispinor. The first and second functions correspond to spin "up" and spin "down" states, as do the third and fourth components.The terms "spin up" and "spin down" are relative to a chosen direction, conventionally the z-direction. An electron may be in a superposition of spin up and spin down, which corresponds to the spin axis pointing in some other direction. The spin state may depend on location.
An electron in the vicinity of a nucleus necessarily has non-zero amplitudes for the third and fourth components. Far from the nucleus these may be small, but near the nucleus they become large.
Quantum numbers
The eigenfunctions of the Hamiltonian, which means functions with a definite energy, have energies characterized not by the quantum number only, but by and a quantum number, the total angular momentum quantum number. The quantum number determines the sum of the squares of the three angular momenta to be . These angular momenta include both orbital angular momentum and spin angular momentum. The splitting of the energies of states of the same principal quantum number due to differences in is called fine structure. The total angular momentum quantum number ranges from to.The orbitals for a given state can be written using two radial functions and two angle functions. The radial functions depend on both the principal quantum number and an integer, defined as:
where is the azimuthal quantum number that ranges from to. The angle functions depend on and on a quantum number, which ranges from to by steps of. The states are labeled using the letters S, P, D, F etc. to stand for states with equal to,,,, etc., with a subscript giving. For instance, the states for are given in the following table :
| , | F5/2 | F5/2 | F5/2 | F5/2 | F5/2 | F5/2 | ||
| , | D3/2 | D3/2 | D3/2 | D3/2 | ||||
| , | P1/2 | P1/2 | ||||||
| , | S1/2 | S1/2 | ||||||
| k = −2, ℓ = 1 | P3/2 | P3/2 | P3/2 | P3/2 | ||||
| k = −3, ℓ = 2 | D5/2 | D5/2 | D5/2 | D5/2 | D5/2 | D5/2 | ||
| k = −4, ℓ = 3 | F7/2 | F7/2 | F7/2 | F7/2 | F7/2 | F7/2 | F7/2 | F7/2 |
These can be additionally labeled with a subscript giving. There are states with principal quantum number, of them with any allowed except the highest for which there are only. Since the orbitals having given values of and have the same energy according to the Dirac equation, they form a basis for the space of functions having that energy.