Homoplasmy
Homoplasmy is a term used in genetics to describe a eukaryotic cell whose copies of mitochondrial DNA are all identical. In normal and healthy tissues, all cells are homoplasmic. Homoplasmic mitochondrial DNA copies may be normal or mutated; however, most mutations are heteroplasmic. It has been discovered, though, that homoplasmic mitochondrial DNA mutations may be found in human tumors.
The term may also refer to uniformity of plant plastid DNA, whether occurring naturally or otherwise.
Inheritance
In almost every species, mitochondrial DNA is . This means that all of the offspring of a female will have identical and homoplasmic mitochondrial DNA. It is very rare for females to pass on heteroplasmic or homoplasmic mutations because of the genetic bottleneck, where only a few out of many mitochondria actually are passed on to offspring.The mussel Mytilus edulis is an anomaly in terms of mitochondrial DNA inheritance. Unlike almost all animals, this species has biparental inheritance for mitochondrial DNA, meaning that both the male and the female contribute mitochondria to the offspring. This was discovered when researchers realized that most individuals of a Mytilus edulis population were heteroplasmic. Researchers also believe that this could be a by-product of species hybridization.
Mutations
There is evidence of both homoplasmic and heteroplasmic inherited mutations that lead to disease, though heteroplasmic mutations typically are a precursor to homoplasmic disease.Many diseases resulting from mutations in mitochondrial DNA are not inherited but developed as the untranslated region of mitochondrial DNA is thought to be particularly susceptible to mutation. Many cancer types are the result of mutations in the mtDNA. For example, a specific type of mutation in one specific area of mtDNA was found to be in several different tumor types.
Mitochondria often undergo , which means that different organelles in the same cell can fuse together to become one mitochondria, or can break apart and become two. This process can be used to mitigate the effects of heteroplasmic mutations. Each mitochondria has multiple nucleoids, which consist of several copies of mtDNA, and when mitochondria fuse together, these nucleoids do not exchange DNA; therefore, if two mitochondria that have different DNA fuse together, they will have only two types of nucleoids. This means that fusion can be used to generate complementary nucleoids if a mutation causes one mitochondria to no longer be functional. Additionally, fission can cause one mitochondria with two different nucleoids to become two mitochondria each with only one type of nucleoid. Some researchers believe that this could be a useful tool to treat diseases caused by mutations in mtDNA.