Feedback
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause and effect that forms a circuit or loop. The system can then be said to feed back into itself. The notion of cause-and-effect has to be handled carefully when applied to feedback systems:
History
Self-regulating mechanisms have existed since antiquity, and the idea of feedback started to enter economic theory in Britain by the 18th century, but it was not at that time recognized as a universal abstraction and so did not have a name.The first ever known artificial feedback device was a float valve, for maintaining water at a constant level, invented in 270 BC in Alexandria, Egypt. This device illustrated the principle of feedback: a low water level opens the valve, the rising water then provides feedback into the system, closing the valve when the required level is reached. This then reoccurs in a circular fashion as the water level fluctuates.
Centrifugal governors were used to regulate the distance and pressure between millstones in windmills since the 17th century. In 1788, James Watt designed his first centrifugal governor following a suggestion from his business partner Matthew Boulton, for use in the steam engines of their production. Early steam engines employed a purely reciprocating motion, and were used for pumping water – an application that could tolerate variations in the working speed, but the use of steam engines for other applications called for more precise control of the speed.
In 1868, James Clerk Maxwell wrote a famous paper, "On governors", that is widely considered a classic in feedback control theory. This was a landmark paper on control theory and the mathematics of feedback.
The verb phrase to feed back, in the sense of returning to an earlier position in a mechanical process, was in use in the US by the 1860s, and in 1909, Nobel laureate Karl Ferdinand Braun used the term "feed-back" as a noun to refer to coupling between components of an electronic circuit.
By the end of 1912, researchers using early electronic amplifiers had discovered that deliberately coupling part of the output signal back to the input circuit would boost the amplification, but would also cause the audion to howl or sing. This action of feeding back of the signal from output to input gave rise to the use of the term "feedback" as a distinct word by 1920.
The development of cybernetics from the 1940s onwards was centred around the study of circular causal feedback mechanisms.
Over the years there has been some dispute as to the best definition of feedback. According to cybernetician Ashby, mathematicians and theorists interested in the principles of feedback mechanisms prefer the definition of "circularity of action", which keeps the theory simple and consistent. For those with more practical aims, feedback should be a deliberate effect via some more tangible connection.
Focusing on uses in management theory, Ramaprasad defines feedback generally as "...information about the gap between the actual level and the reference level of a system parameter" that is used to "alter the gap in some way". He emphasizes that the information by itself is not feedback unless translated into action.
Types
Positive and negative feedback
Positive feedback: If the signal feedback from output is in phase with the input signal, the feedback is called positive feedback.Negative feedback: If the signal feedback is out of phase by 180° with respect to the input signal, the feedback is called negative feedback.
As an example of negative feedback, the diagram might represent a cruise control system in a car that matches a target speed such as the speed limit. The controlled system is the car; its input includes the combined torque from the engine and from the changing slope of the road. The car's speed is measured by a speedometer. The error signal is the difference of the speed as measured by the speedometer from the target speed. The controller interprets the speed to adjust the accelerator, commanding the fuel flow to the engine. The resulting change in engine torque, the feedback, combines with the torque exerted by the change of road grade to reduce the error in speed, minimising the changing slope.
The terms "positive" and "negative" were first applied to feedback prior to WWII. The idea of positive feedback already existed in the 1920s when the regenerative circuit was made. Friis and Jensen described this circuit in a set of electronic amplifiers as a case where the "feed-back" action is positive in contrast to negative feed-back action, which they mentioned only in passing. Harold Stephen Black's classic 1934 paper first details the use of negative feedback in electronic amplifiers. According to Black:
According to Mindell confusion in the terms arose shortly after this:
Even before these terms were being used, James Clerk Maxwell had described their concept through several kinds of "component motions" associated with the centrifugal governors used in steam engines. He distinguished those that lead to a continued increase in a disturbance or the amplitude of a wave or oscillation, from those that lead to a decrease of the same quality.
Terminology
The terms positive and negative feedback are defined in different ways within different disciplines.- the change of the gap between reference and actual values of a parameter or trait, based on whether the gap is widening or narrowing.
- the valence of the action or effect that alters the gap, based on whether it makes the recipient or observer happy or unhappy.
Yet even within a single discipline an example of feedback can be called either positive or negative, depending on how values are measured or referenced.
This confusion may arise because feedback can be used to provide information or motivate, and often has both a qualitative and a quantitative'' component. As Connellan and Zemke put it:
Limitations of negative and positive feedback
While simple systems can sometimes be described as one or the other type, many systems with feedback loops cannot be shoehorned into either type, and this is especially true when multiple loops are present.Other types of feedback
In general, feedback systems can have many signals fed back and the feedback loop frequently contain mixtures of positive and negative feedback where positive and negative feedback can dominate at different frequencies or different points in the state space of a system.The term bipolar feedback has been coined to refer to biological systems where positive and negative feedback systems can interact, the output of one affecting the input of another, and vice versa.
Some systems with feedback can have very complex behaviors such as chaotic behaviors in non-linear systems, while others have much more predictable behaviors, such as those that are used to make and design digital systems.
Feedback is used extensively in digital systems. For example, binary counters and similar devices employ feedback where the current state and inputs are used to calculate a new state which is then fed back and clocked back into the device to update it.
Applications
Mathematics and dynamical systems
By using feedback properties, the behavior of a system can be altered to meet the needs of an application; systems can be made stable, responsive or held constant. It is shown that dynamical systems with a feedback experience an adaptation to the edge of chaos.Physics
Physical systems present feedback through the mutual interactions of its parts. Feedback is also relevant for the regulation of experimental conditions, noise reduction, and signal control. The thermodynamics of feedback-controlled systems has intrigued physicist since the Maxwell's demon, with recent advances on the consequences for entropy reduction and performance increase.Biology
In biological systems such as organisms, ecosystems, or the biosphere, most parameters must stay under control within a narrow range around a certain optimal level under certain environmental conditions. The deviation of the optimal value of the controlled parameter can result from the changes in internal and external environments. A change of some of the environmental conditions may also require change of that range to change for the system to function. The value of the parameter to maintain is recorded by a reception system and conveyed to a regulation module via an information channel. An example of this is insulin oscillations.Biological systems contain many types of regulatory circuits, both positive and negative. As in other contexts, positive and negative do not imply that the feedback causes good or bad effects. A negative feedback loop is one that tends to slow down a process, whereas the positive feedback loop tends to accelerate it. The mirror neurons are part of a social feedback system, when an observed action is "mirrored" by the brain—like a self-performed action.
Normal tissue integrity is preserved by feedback interactions between diverse cell types mediated by adhesion molecules and secreted molecules that act as mediators; failure of key feedback mechanisms in cancer disrupts tissue function.
In an injured or infected tissue, inflammatory mediators elicit feedback responses in cells, which alter gene expression, and change the groups of molecules expressed and secreted, including molecules that induce diverse cells to cooperate and restore tissue structure and function. This type of feedback is important because it enables coordination of immune responses and recovery from infections and injuries. During cancer, key elements of this feedback fail. This disrupts tissue function and immunity.
Mechanisms of feedback were first elucidated in bacteria, where a nutrient elicits changes in some of their metabolic functions.
Feedback is also central to the operations of genes and gene regulatory networks. Repressor and activator proteins are used to create genetic operons, which were identified by François Jacob and Jacques Monod in 1961 as feedback loops. These feedback loops may be positive, or negative.
On a larger scale, feedback can have a stabilizing effect on animal populations even when profoundly affected by external changes, although time lags in feedback response can give rise to predator-prey cycles.
In zymology, feedback serves as regulation of activity of an enzyme by its direct or downstream in the metabolic pathway
The hypothalamic–pituitary–adrenal axis is largely controlled by positive and negative feedback, much of which is still unknown.
In psychology, the body receives a stimulus from the environment or internally that causes the release of hormones. Release of hormones then may cause more of those hormones to be released, causing a positive feedback loop. This cycle is also found in certain behaviour. For example, "shame loops" occur in people who blush easily. When they realize that they are blushing, they become even more embarrassed, which leads to further blushing, and so on.