Ectomycorrhiza
An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota.
Ectomycorrhizae form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizae is increasingly important in areas such as ecosystem management and restoration, forestry, and agriculture.
Unlike other mycorrhizal relationships, such as arbuscular mycorrhiza and ericoid mycorrhiza, ectomycorrhizal fungi do not penetrate their host's cell wall. Instead they form an entirely intercellular interfaces known as the Hartig net, consisting of highly branched hyphae forming a latticework between epidermal and cortical root cells.
Ectomycorrhizas are further differentiated from other mycorrhizas by the formation of a dense hyphal sheath, known as the mantle, surrounding the root surface. This sheathing mantle can be up to 40 μm thick, with hyphae extending up to several centimeters into the surrounding soil. The hyphal network helps the plant to take up nutrients including water and minerals, often helping the host plant to survive adverse conditions. In exchange, the fungal symbiont is provided with access to carbohydrates.
Although samples of ectomycorrhizas are usually taken from the surface horizon due to higher root density, ectomycorrhizas are known to occur in deep tree roots, some occurring at least as deep as 4 m.
Well-known EcM fungal fruiting bodies include the economically important and edible truffle and the deadly death caps and destroying angels.
Evolution
Mycorrhizal symbioses are ubiquitous in terrestrial ecosystems, and it is possible that these associations helped to facilitate land colonization by plants. There is paleobiological and molecular evidence that arbuscular mycorrhizas originated at least 460 million years ago.EcM plants and fungi exhibit a wide taxonomic distribution across all continents, suggesting that the EcM symbiosis has ancient evolutionary roots. Pinaceae is the oldest extant plant family in which symbiosis with EcM fungi occurs, and fossils from this family date back to 156 million years ago.
It has been proposed that habitat type and the distinct functions of different mycorrhizas help determine which type of symbiosis is predominant in a given area. In this theory, EcM symbioses evolved in ecosystems such as boreal forests that are relatively productive but in which nutrient cycling is still limiting. Ectomycorrhizas are intermediate in their ability to take up nutrients, being more efficient than arbuscular mycorrhizas and less so than ericoid mycorrhizas, making them useful in an intermediate nutrient situation.
Paleobiology
Fungi are composed of soft tissues, making fossilization difficult and the discovery of fungal fossils rare. However, some exquisitely preserved specimens have been discovered in the middle Eocene Princeton Chert of British Columbia. These ectomycorrhizal fossils show clear evidence of a Hartig net, mantle and hyphae, demonstrating well-established EcM associations at least 50 million years ago.The fossil record shows that the more common arbuscular mycorrhizas formed long before other types of fungal-plant symbioses. Ectomycorrhizas may have evolved with the diversification of plants and the evolution of conifers and angiosperms. Arbuscular mycorrhizas may thus have been a driving force in the plant colonization of land, while ectomycorrhizas may have arisen either in response to further speciation as the Earth's climate became more seasonal and arid, or perhaps simply in response to nutritionally deficient habitats.
Molecular studies
Molecular and phylogenetic analyses of fungal lineages suggest that EcM fungi have evolved and persisted numerous times from non-EcM ancestors such as humus and wood saprotrophic fungi. The estimates range from 7–16 to ~66 independent evolutions of EcM associations. Some studies suggest that reversals back to the ancestral free-living condition have occurred, but this is controversial.Morphology
As suggested by the name, the biomass of the mycosymbiont is mostly exterior to the plant root. The fungal structure is composed primarily of three parts: 1) the intraradical hyphae making up the Hartig net; 2) the mantle that forms a sheath surrounding the root tip; and 3) the extraradical hyphae and related structures that spread throughout the soil.Hartig net
The Hartig net is formed by an ingrowth of hyphae into the root of the plant host. The hyphae penetrate and grow in a transverse direction to the axis of the root, and thus form a network between the outer cells of the root axis. In this region fungal and root cells touch, and this is where nutrient and carbon exchange occurs.The depth of penetration differs between species. In Eucalyptus and Alnus the Hartig net is confined to the epidermis, whereas in most gymnosperms the hyphae penetrate more deeply, into the cortical cells or the endodermis. In many epidermal types elongation of cells along the epidermis occurs, increasing surface contact between fungus and root cells. Most cortical type Hartig nets do not show this elongation, suggesting different strategies for increasing surface contact among species.
Mantle
A hyphal sheath known as the mantle, which often has more biomass than the Hartig net interface, envelops the root. The structure of the mantle is variable, ranging from a loose network of hyphae to a structured and stratified arrangement of tissue. Often, these layers resemble plant parenchyma tissue and are referred to as pseudoparenchymatous.Because the root is enveloped by the mantle it is often affected developmentally. EcM fungal partners characteristically suppress root hair development of their plant symbiont. They can also increase root branching by inducing cytokinins in the plant. These branching patterns can become so extensive that a single consolidated mantle can envelop many root tips at a time. Structures like this are called tuberculate or coralloid ectomycorrhizas.
The mantles of different EcM pairs often display characteristic traits such as color, extent of branching, and degree of complexity which are used to help identify the fungus, often in tandem with molecular analyses. Fruiting bodies are also useful but are not always available.
Extraradical hyphae and linkage
Extraradical hyphae extend outward from the mantle into the soil, compensating for the suppression of root hairs by increasing the effective surface area of the colonized root. These hyphae can spread out singly, or in an aggregate arrangement known as a rhizomorph. These composite hyphal organs can have a wide range of structures. Some rhizomorphs are simply parallel, linear collections of hyphae. Others have more complex organization, for example the central hyphae may be larger in diameter than other hyphae, or the hyphae may grow continuously at the tip, penetrating into new areas in a way that superficially resembles meristematic activity.This part of the ectomycorrhiza, which is called the extraradical or extramatrical mycelium, functions largely as a transport structure. They often spread considerable distances, maintaining a large contact area with the soil. Some studies have shown a relationship between nutrient transport rates and the degree of rhizomorph organization. The rhizomorphs of different EcM types often have different organization types and exploration strategies, observed as different structure and growth within the soil. These differences also help identify the symbiotic fungus.
The hyphae extending outward into the soil from an ectomycorrhiza can infect other nearby plants. Experiments and field studies show that this can lead to the formation of common mycorrhizal networks that allow sharing of carbon and nutrients among the connected host plants. For example, the rare isotope carbon-14 was added to a particular tree and later detected in nearby plants and seedlings. One study observed a bidirectional carbon transfer between Betula papyrifera and Pseudotsuga menziesii, primarily through the hyphae of the ectomycorrhiza. However, not all plants are compatible with all fungal networks, so not all plants can exploit the benefits of established ectomycorrhizal linkages.
The shared nutrient connection through CMNs has been suggested to be involved with other ecological processes such as seedling establishment, forest succession and other plant-plant interactions. Some arbuscular mycorrhizas have been shown to carry signals warning plants on the network of attack by insects or disease.
Fruiting bodies
Unlike most arbuscular mycorrhizal fungi, EcM fungi reproduce sexually and produce visible fruiting bodies in a wide variety of forms. The fruiting body, or sporocarp, can be thought of as an extension of the extraradical hyphae. Its cell walls and spores are typically composed of complex carbohydrates, and often incorporate a great deal of nitrogen. Many EcM fungi can only form fruiting bodies and complete their life cycles by participating in an EcM relationship.The fruit bodies of many species take on classic, well-recognized shapes such as epigeous mushrooms and hypogeous truffles. Most of these produce microscopic propagules of about 10 μm that can disperse over large distances by way of various vectors, ranging from wind to mycophagous animals. It has been suggested that animals are drawn to hypogeous fruiting bodies because they are rich in nutrients such as nitrogen, phosphorus, minerals and vitamins. However, others argue that the specific nutrients are less important than the availability of food at specific times of the year.
Surveys of fruiting bodies have been used to assess community composition and richness in many studies. However, this method is imperfect as fruiting bodies do not last long and can be hard to detect.