Digital subscriber line


Digital subscriber line, originally digital subscriber loop, is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line, the most commonly installed DSL technology, for Internet access.
In ADSL, the data throughput in the upstream direction is lower, hence the designation of asymmetric service. In symmetric digital subscriber line services, the downstream and upstream data rates are equal.
DSL service can be delivered simultaneously with wired telephone service on the same telephone line since DSL uses higher frequency bands for data transmission. On the customer premises, a DSL filter is installed on each telephone to prevent undesirable interaction between DSL and telephone service.
The bit rate of consumer ADSL services typically ranges from up to, while the later VDSL+ technology delivers between and in the direction to the customer, with up to upstream. The exact performance is depending on technology, line conditions, and service-level implementation. Researchers at Bell Labs have reached SDSL speeds over using traditional copper telephone lines, though such speeds have not been made available to customers yet.

History

Initially, it was believed that ordinary phone lines could only be used at modest speeds, usually less than 9600 bits per second. In the 1950s, ordinary twisted-pair telephone cable often carried 4 MHz television signals between studios, suggesting that such lines would allow transmitting many megabits per second. One such circuit in the United Kingdom ran some between the BBC studios in Newcastle-upon-Tyne and the Pontop Pike transmitting station. However, these cables had other impairments besides Gaussian noise, preventing such rates from becoming practical in the field. The 1980s saw the development of techniques for broadband communications that allowed the limit to be greatly extended. A patent was filed in 1979 for the use of existing telephone wires for both telephones and data terminals that were connected to a remote computer via a digital data carrier system.
The motivation for digital subscriber line technology was the Integrated Services Digital Network specification proposed in 1984 by the CCITT as part of Recommendation I.120, later reused as ISDN digital subscriber line. Employees at Bellcore developed asymmetric digital subscriber line by placing wide-band digital signals at frequencies above the existing baseband analog voice signal carried on conventional twisted pair cabling between telephone exchanges and customers. A patent was filed by AT&T Bell Labs on the basic DSL concept in 1988.
Joseph W. Lechleider's contribution to DSL was his insight that an asymmetric arrangement offered more than double the bandwidth capacity of symmetric DSL. This allowed Internet service providers to offer efficient service to consumers, who benefited greatly from the ability to download large amounts of data but rarely needed to upload comparable amounts. ADSL supports two modes of transport: fast channel and interleaved channel. Fast channel is preferred for streaming multimedia, where an occasional dropped bit is acceptable, but lags are less so. Interleaved channel works better for file transfers, where the delivered data must be error-free but latency incurred by the retransmission of error-containing packets is acceptable.
Consumer-oriented ADSL was designed to operate on existing lines already conditioned for Basic Rate Interface ISDN services. Engineers developed high-speed DSL facilities such as high bit rate digital subscriber line and symmetric digital subscriber line to provision traditional Digital Signal 1 services over standard copper pair facilities.
Older ADSL standards delivered to the customer over about of unshielded twisted-pair copper wire. Newer variants improved these rates. Distances greater than significantly reduce the bandwidth usable on the wires, thus reducing the data rate. But ADSL loop extenders increase these distances by repeating the signal, allowing the local exchange carrier to deliver DSL speeds to any distance.
Until the late 1990s, the cost of digital signal processors for DSL was prohibitive. All types of DSL employ highly complex digital signal processing algorithms to overcome the inherent limitations of the existing twisted pair wires. Due to the advancements of very-large-scale integration technology, the cost of the equipment associated with a DSL deployment lowered significantly. The two main pieces of equipment are a digital subscriber line access multiplexer at one end and a DSL modem at the other end.
It is possible to set up a DSL connection over an existing cable. Such deployment, even including equipment, is much cheaper than installing a new, high-bandwidth fiber-optic cable over the same route and distance. This is true both for ADSL and SDSL variations. DSL's continued use reflects advancements in electronics that have improved performance and reduced costs, despite the high expense of laying new physical infrastructure.
These advantages made ADSL a better proposition for customers requiring Internet access than metered dial up, while also allowing voice calls to be received at the same time as a data connection. Telephone companies were also under pressure to move to ADSL owing to competition from cable companies, which use DOCSIS cable modem technology to achieve similar speeds. Demand for high bandwidth applications, such as video and file sharing, also contributed to the popularity of ADSL technology. Some of the first field trials for DSL were carried out in 1996.
Early DSL service required a dedicated dry loop, but when the U.S. Federal Communications Commission required incumbent local exchange carriers to lease their lines to competing DSL service providers, shared-line DSL became available. Also known as DSL over unbundled network element, this unbundling of services allows a single subscriber to receive two separate services from two separate providers on one cable pair. The DSL service provider's equipment is co-located in the same telephone exchange as that of the ILEC supplying the customer's pre-existing voice service. The subscriber's circuit is rewired to interface with hardware supplied by the ILEC which combines a DSL frequency and plain old telephone service signals on a single copper pair.
Since 1999, certain ISPs have been offering microfilters. These devices are installed indoors and serve the same purpose as DSL splitters, which are deployed outdoors: they divide the frequencies needed for ADSL and POTS phone calls. These filters originated out of a desire to make self-installation of DSL service possible and eliminate early outdoor DSL splitters which were installed at or near the demarcation point between the customer and the ISP.
By 2012, some carriers in the United States reported that DSL remote terminals with fiber backhaul were replacing older ADSL systems.

Operation

Telephones are connected to the telephone exchange via a local loop, which is a physical pair of wires. The local loop was originally intended mostly for the transmission of speech, encompassing an audio frequency range of 300 to 3400 hertz. However, as long-distance trunks were gradually converted from analog to digital operation, the idea of being able to pass data through the local loop took hold, ultimately leading to DSL.
The local loop connecting the telephone exchange to most subscribers has the capability of carrying frequencies well beyond the 3400 Hz upper limit of POTS. Depending on the length and quality of the loop, the upper limit can be tens of megahertz. DSL takes advantage of this unused bandwidth of the local loop by creating 4312.5 Hz wide channels starting between 10 and 100 kHz, depending on how the system is configured. Allocation of channels continues to higher frequencies until new channels are deemed unusable. Each channel is evaluated for usability in much the same way an analog modem would on a POTS connection. More usable channels equate to more available bandwidth, which is why distance and line quality are a factor.
The pool of usable channels is then split into two different frequency bands for upstream and downstream traffic, based on a preconfigured ratio. This segregation reduces interference. Once the channel groups have been established, the individual channels are bonded into a pair of virtual circuits, one in each direction. Like analog modems, DSL transceivers constantly monitor the quality of each channel and will add or remove them from service depending on whether they are usable. Once upstream and downstream circuits are established, a subscriber can connect to a service such as an Internet service provider or other network services, like a corporate MPLS network.
The underlying technology of transport across DSL facilities uses modulation of high-frequency carrier waves, an analog signal transmission. A DSL circuit terminates at each end in a modem which modulates patterns of bits into certain high-frequency impulses for transmission to the opposing modem. Signals received from the far-end modem are demodulated to yield a corresponding bit pattern that the modem passes on, in digital form, to its interfaced equipment, such as a computer, router, switch, etc.
Unlike traditional dial-up modems, which modulate bits into signals in the 300–3400 Hz audio baseband, DSL modems modulate frequencies from 4000 Hz to as high as 4 MHz. This frequency band separation enables DSL service and plain old telephone service to coexist on the same cables, known as voice-grade cables. On the subscriber's end of the circuit, inline DSL filters are installed on each telephone to pass voice frequencies but filter the high-frequency signals that would otherwise be heard as hiss. Also, nonlinear elements in the phone could otherwise generate audible intermodulation and may impair the operation of the data modem in the absence of these low-pass filters. DSL and RADSL modulations do not use the voice-frequency band so high-pass filters are incorporated in the circuitry of DSL modems filter out voice frequencies.
Because DSL operates above the 3.4 kHz voice limit, it cannot pass through a loading coil, which is an inductive coil that is designed to counteract loss caused by shunt capacitance. Loading coils are commonly set at regular intervals in POTS lines. Voice service cannot be maintained past a certain distance without such coils. Therefore, some areas that are within range for DSL service are disqualified from eligibility because of loading coil placement. Because of this, phone companies endeavor to remove loading coils on copper loops that can operate without them. Longer lines that require them can be replaced with fiber to the neighborhood or node.
Most residential and small-office DSL implementations reserve low frequencies for POTS, so that the existing voice service continues to operate independently of the DSL service. Thus POTS-based communications, including fax machines and dial-up modems, can share the wires with DSL. Only one DSL modem can use the subscriber line at a time. The standard way to let multiple computers share a DSL connection uses a router that establishes a connection between the DSL modem and a local Ethernet, powerline, or Wi-Fi network on the customer's premises.
The theoretical foundations of DSL, like much of communication technology, can be traced back to Claude Shannon's seminal 1948 paper, "A Mathematical Theory of Communication". Generally, higher bit rate transmissions require a wider frequency band, though the ratio of bit rate to symbol rate and thus to bandwidth are not linear due to significant innovations in digital signal processing and digital modulation methods.