Data General
Data General Corporation was an early minicomputer firm formed in 1968. Three of the four founders were former employees of Digital Equipment Corporation.
Their first product, 1969's Data General Nova, was a 16-bit minicomputer intended to both outperform and cost less than the equivalent from DEC, the 12-bit PDP-8. A basic Nova system cost two-thirds or less than a similar PDP-8 while running faster, offering easy expandability, being significantly smaller, and proving more reliable in the field. Combined with Data General RDOS and programming languages like Data General Business Basic, Novas provided a multi-user platform far ahead of many contemporary systems. A series of updated Nova machines were released through the early 1970s that kept the Nova line at the front of the 16-bit mini world.
The Nova was followed by the Eclipse series which offered much larger memory capacity while still being able to run Nova code without modification. The Eclipse launch was marred by production problems and it was some time before it was a reliable replacement for the tens of thousands of Novas in the market. As the mini world moved from 16-bit to 32, DG introduced the Data General Eclipse MV/8000, whose development was extensively documented in the popular 1981 book, The Soul of a New Machine. Although DG's computers were successful, the introduction of the IBM PC in 1981 marked the beginning of the end for minicomputers, and by the end of the decade, the entire market had largely disappeared. The introduction of the Data General/One in 1984 did nothing to stop the erosion.
In a major business pivot, in 1989 DG released the AViiON series of scalable Unix systems which spanned from desktop workstations to departmental servers. This scalability was managed through the use of NUMA, allowing a number of commodity processors to work together in a single system. Following AViiON was the CLARiiON series of network-attached storage systems which became a major product line in the later 1990s. This led to a purchase by EMC, the major vendor in the storage space at that time. EMC shut down all of DG's lines except for CLARiiON, which continued sales until 2012.
History
Origin, founding and early years: Nova and SuperNova
Data General was founded by several engineers from Digital Equipment Corporation who were frustrated with DEC's management and left to form their own company. The chief founders were Edson de Castro, Henry Burkhardt III, and Richard Sogge of Digital Equipment, and Herbert Richman of Fairchild Semiconductor. The company was founded in Hudson, Massachusetts, in 1968. Harvey Newquist was hired from Computer Control Corporation to oversee manufacturing.Edson de Castro was the chief engineer in charge of the PDP-8, DEC's line of inexpensive computers that created the minicomputer market. It was designed specifically to be used in laboratory equipment settings; as the technology improved, it was reduced in size to fit into a 19-inch rack. Many PDP-8s still operated decades later in these roles. De Castro was watching developments in manufacturing, especially more complex printed circuit boards and wave soldering that suggested that the PDP-8 could be produced much more inexpensively. DEC was not interested, having turned its attention increasingly to the high-end market. Convinced he could improve the process, De Castro began work on his own low-cost 16-bit design.
Image:Data General NOVA System.jpg|thumb|left|upright|Data General Nova System
The result was released in 1969 by Data General as the Nova. The Nova, like the PDP-8, used a simple accumulator-based architecture. It lacked general registers and the stack-pointer functionality of the more advanced PDP-11, as did competing products, such as the HP 1000; compilers used hardware-based memory locations in lieu of a stack pointer. Designed to be rack-mounted similarly to the later PDP-8 machines, it was packaged on four PCB cards and was thus smaller in height, while also including a number of features that made it run considerably faster. Announced as "the best small computer in the world", the Nova quickly gained a following, especially in scientific and educational markets, and made the company flush with cash. DEC sued for misappropriation of its trade secrets, but this ultimately went nowhere. With the initial success of the Nova, Data General went public in the fall of 1969.
Image:Data General mN601G 1.jpg|thumb|right| Data General mN601G, used in the microNova
The original Nova was soon followed by the faster SuperNova, which replaced the Nova's 4-bit arithmetic logic unit with a 16-bit version that made the machine roughly four times as fast. Several variations and upgrades to the SuperNova core followed. The last major version, the Nova 4, was released in 1978. During this period the Nova generated 20% annual growth rates for the company, becoming a star in the business community and generating US$ 100 million in sales in 1975. In 1977, DG launched a 16-bit microcomputer called the microNOVA to poor commercial success.
The Nova series played a very important role as instruction-set inspiration to Charles P. Thacker and others at Xerox PARC during their construction of the Xerox Alto.
Late 1970s to late 1980s: crisis and a short term solution
In 1974, the Nova was supplanted by their upscale 16-bit machine, the Eclipse. Based on many of the same concepts as the Nova, it added support for virtual memory and multitasking more suitable to the small office environment.Image:Data General factory in Japan being built.png|thumb|right|Data General factory being built in Japan, c. 1979
Production problems with the Eclipse led to a rash of lawsuits in the late 1970s. Newer versions of the machine were pre-ordered by many of DG's customers, which were never delivered. Many customers sued Data General after more than a year of waiting, charging the company with breach of contract, while others simply canceled their orders and went elsewhere. The Eclipse was originally intended to replace the Nova outright, evidenced by the fact that the Nova 3 series, released at the same time and utilizing virtually the same internal architecture as the Eclipse, was phased out the next year. Strong demand continued for the Nova series, resulting in the Nova 4, perhaps as a result of the continuing problems with the Eclipse.
Fountainhead
While DG was still struggling with Eclipse, in 1977, Digital announced the VAX series, their first 32-bit minicomputer line, described as "super-minis". This coincided with the aging of DEC's 16-bit products, notably the PDP-11, which were coming due for replacement. It appeared there was an enormous potential market for 32-bit machines, one that DG might be able to "scoop".Data General immediately launched their own 32-bit effort in 1976 to build what they called the "world's best 32-bit machine", known internally as the "Fountainhead Project", or FHP for short. Development took place off-site so that even DG workers would not know of it. The developers were given free rein over the design and selected a system that used a writable instruction set. The idea was that the instruction set architecture was not fixed, programs could write their own ISA and upload it as microcode to the processor's writable control store. This would allow the ISA to be tailored to the programs being run, for instance, one might upload an ISA tuned for COBOL if the company's workload included significant numbers of COBOL programs.
When Digital's VAX-11/780 was shipped in February 1978, however, Fountainhead was not yet ready to deliver a machine, due mainly to problems in project management. DG's customers left quickly for the VAX world.
Eagle
In the spring of 1978, with Fountainhead apparently in development hell, a secret skunkworks project was started to develop an alternative 32-bit system known as "Eagle" by a team led by Tom West. References to "the Eagle project" and "Project Eagle" co-exist. Eagle was a straightforward, 32-bit extension of the Nova-based Eclipse. It was backwards-compatible with 16-bit Eclipse applications, used the same command-line interpreter, but offered improved 32-bit performance over the VAX 11/780 while using fewer components.By late 1979, it became clear that Eagle would deliver before Fountainhead, igniting an intense turf war within the company for constantly shrinking project funds. In the meantime, customers were abandoning Data General in droves, driven not only by the delivery problems with the original Eclipse, including very serious quality control and customer service problems, but also the power and versatility of Digital's new VAX line. Ultimately, Fountainhead was cancelled and Eagle became the new MV series, with the first model, the Data General Eclipse MV/8000, announced in April 1980.
The Eagle Project was the subject of Tracy Kidder's Pulitzer Prize-winning book, The Soul of a New Machine, making the MV line the best-documented computer project in recent history.
MV series
The MV systems generated an almost miraculous turnaround for Data General. Through the early 1980s sales picked up, and by 1984 the company had over a billion dollars in annual sales.One of Data General's significant customers at this time was the United States Forest Service, which starting in the mid-1980s used DG systems installed at all levels from headquarters in Washington, D.C. down to individual ranger stations and fire command posts. This required equipment of high reliability and generally rugged construction that could be deployed in a wide range of places, often to be maintained and used by people with no computer background at all. The intent was to create new kinds of functional integration in an agency that had long prized its decentralized structure. Despite some tensions, the implementation was effective and the overall effects on the agency notably positive. The introduction, implementation, and effects of the DG systems in USFS were documented in a series of evaluative reports prepared in the late 1980s by the RAND Corporation.
The MV series came in various iterations, from the MV/2000, MV/4000, MV/10000, MV/15000, MV/20000, MV/30000, MV/40000 and ultimately concluded with the MV/60000HA minicomputer. The MV/60000HA was intended to be a High Availability system, with many components duplicated to eliminate the single point of failure. Yet, there were failures among the system's many daughter boards, back-plane, and mid-plane. DG technicians were kept quite busy replacing boards and many blamed poor quality control at the DG factory in Mexico where they were made and refurbished.
In retrospect, the nicely performing MV series was too little, too late. At a time when DG invested its last dollar into the dying minicomputer segment, the microcomputer was rapidly making inroads to the lower-end market segment, and the introduction of the first workstations wiped out all 16-bit machines, once DG's best customer segment. While the MV series did stop the erosion of DG's customer base, this now smaller base was no longer large enough to allow DG to develop their next generation. DG had also changed their marketing to focus on direct sales to Fortune 100 companies and thus alienated many resellers.