Planetary core


A planetary core consists of the innermost layers of a planet. Cores may be entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. In the Solar System, core sizes range from about 20% to 85% of a planet's radius.
Gas giants also have cores, though the composition of these are still a matter of debate and range in possible composition from traditional stony/iron, to ice or to fluid metallic hydrogen. Gas giant cores are proportionally much smaller than those of terrestrial planets, though they can be considerably larger than the Earth's nevertheless; Jupiter's is 10–30 times heavier than Earth, and exoplanet HD149026 b may have a core 100 times the mass of the Earth.
Planetary cores are challenging to study because they are impossible to reach by drill and there are almost no samples that are definitively from the core. Thus, they are studied via indirect techniques such as seismology, mineral physics, and planetary dynamics.

Discovery

Earth's core

In 1797, Henry Cavendish calculated the average density of the Earth to be 5.48 times the density of water, which led to the accepted belief that the Earth was much denser in its interior. Following the discovery of iron meteorites, Wiechert in 1898 postulated that the Earth had a similar bulk composition to iron meteorites, but the iron had settled to the interior of the Earth, and later represented this by integrating the bulk density of the Earth with the missing iron and nickel as a core. The first detection of Earth's core occurred in 1906 by Richard Dixon Oldham upon discovery of the P-wave shadow zone; the liquid outer core. By 1936 seismologists had determined the size of the overall core as well as the boundary between the fluid outer core and the solid inner core.

Moon's core

The internal structure of the Moon was characterized in 1974 using seismic data collected by the Apollo missions of moonquakes. The Moon's core has a radius of 300 km. The Moon's iron core has a liquid outer layer that makes up 60% of the volume of the core, with a solid inner core.

Cores of the rocky planets

The cores of the rocky planets were initially characterized by analyzing data from spacecraft, such as NASA's Mariner 10 that flew by Mercury and Venus to observe their surface characteristics. The cores of other planets cannot be measured using seismometers on their surface, so instead they have to be inferred based on calculations from these fly-by observation. Mass and size can provide a first-order calculation of the components that make up the interior of a planetary body. The structure of rocky planets is constrained by the average density of a planet and its moment of inertia. The moment of inertia for a differentiated planet is less than 0.4, because the density of the planet is concentrated in the center. Mercury has a moment of inertia of 0.346, which is evidence for a core. Conservation of energy calculations as well as magnetic field measurements can also constrain composition, and surface geology of the planets can characterize differentiation of the body since its accretion. Mercury, Venus, and Mars’ cores are about 75%, 50%, and 40% of their radius respectively.

Formation

Accretion

Planetary systems form from flattened disks of dust and gas that accrete rapidly into planetesimals around 10 km in diameter. From here gravity takes over to produce Moon to Mars-sized planetary embryos and these develop into planetary bodies over an additional 10–100 million years.
Jupiter and Saturn most likely formed around previously existing rocky and/or icy bodies, rendering these previous primordial planets into gas-giant cores. This is the planetary core accretion model of planet formation.

Differentiation

is broadly defined as the development from one thing to many things; homogeneous body to several heterogeneous components. The hafnium-182/tungsten-182 isotopic system has a half-life of 9 million years, and is approximated as an extinct system after 45 million years. Hafnium is a lithophile element and tungsten is siderophile element. Thus if metal segregation occurred in under 45 million years, silicate reservoirs develop positive Hf/W anomalies, and metal reservoirs acquire negative anomalies relative to undifferentiated chondrite material. The observed Hf/W ratios in iron meteorites constrain metal segregation to under 5 million years, the Earth's mantle Hf/W ratio places Earth's core as having segregated within 25 million years. Several factors control segregation of a metal core including the crystallization of perovskite. Crystallization of perovskite in an early magma ocean is an oxidation process and may drive the production and extraction of iron metal from an original silicate melt.

Core merging and impacts

Impacts between planet-sized bodies in the early Solar System are important aspects in the formation and growth of planets and planetary cores.

Earth–Moon system

The giant impact hypothesis states that an impact between a theoretical Mars-sized planet Theia and the early Earth formed the modern Earth and Moon. During this impact the majority of the iron from Theia and the Earth became incorporated into the Earth's core.

Mars

Core merging between the proto-Mars and another differentiated planetoid could have been as fast as 1000 years or as slow as 300,000 years.

Chemistry

Determining primary composition – Earth

Using the chondritic reference model and combining known compositions of the crust and mantle, the unknown component, the composition of the inner and outer core, can be determined: 85% Fe, 5% Ni, 0.9% Cr, 0.25% Co, and all other refractory metals at very low concentration. This leaves Earth's core with a 5–10% weight deficit for the outer core, and a 4–5% weight deficit for the inner core; which is attributed to lighter elements that should be cosmically abundant and are iron-soluble; H, O, C, S, P, and Si. Earth's core contains half the Earth's vanadium and chromium, and may contain considerable niobium and tantalum. Earth's core is depleted in germanium and gallium.

Weight deficit components – Earth

is strongly siderophilic and only moderately volatile and depleted in the silicate earth; thus may account for 1.9 weight % of Earth's core. By similar arguments, phosphorus may be present up to 0.2 weight %. Hydrogen and carbon, however, are highly volatile and thus would have been lost during early accretion and therefore can only account for 0.1 to 0.2 weight % respectively. Silicon and oxygen thus make up the remaining mass deficit of Earth's core; though the abundances of each are still a matter of controversy revolving largely around the pressure and oxidation state of Earth's core during its formation. No geochemical evidence exists to include any radioactive elements in Earth's core. Despite this, experimental evidence has found potassium to be strongly siderophilic at the temperatures associated with core formation, thus there is potential for potassium in planetary cores of planets, and therefore potassium-40 as well.

Isotopic composition – Earth

/tungsten isotopic ratios, when compared with a chondritic reference frame, show a marked enrichment in the silicate earth indicating depletion in Earth's core. Iron meteorites, believed to be resultant from very early core fractionation processes, are also depleted. Niobium/tantalum isotopic ratios, when compared with a chondritic reference frame, show mild depletion in bulk silicate Earth and the moon.

Pallasite meteorites

s are thought to form at the core-mantle boundary of an early planetesimal, although a recent hypothesis suggests that they are impact-generated mixtures of core and mantle materials.

Dynamics

Dynamo

is a proposed mechanism to explain how celestial bodies like the Earth generate magnetic fields. The presence or lack of a magnetic field can help constrain the dynamics of a planetary core. Refer to Earth's magnetic field for further details. A dynamo requires a source of thermal and/or compositional buoyancy as a driving force. Thermal buoyancy from a cooling core alone cannot drive the necessary convection as indicated by modelling, thus compositional buoyancy is required. On Earth the buoyancy is derived from crystallization of the inner core. Examples of compositional buoyancy include precipitation of iron alloys onto the inner core and liquid immiscibility both, which could influence convection both positively and negatively depending on ambient temperatures and pressures associated with the host-body. Other celestial bodies that exhibit magnetic fields are Mercury, Jupiter, Ganymede, and Saturn.

Core heat source

A planetary core acts as a heat source for the outer layers of a planet. In the Earth, the heat flux over the core mantle boundary is 12 terawatts. This value is calculated from a variety of factors: secular cooling, differentiation of light elements, Coriolis forces, radioactive decay, and latent heat of crystallization. All planetary bodies have a primordial heat value, or the amount of energy from accretion. Cooling from this initial temperature is called secular cooling, and in the Earth the secular cooling of the core transfers heat into an insulating silicate mantle. As the inner core grows, the latent heat of crystallization adds to the heat flux into the mantle.

Stability and instability

Small planetary cores may experience catastrophic energy release associated with phase changes within their cores. Ramsey found that the total energy released by such a phase change would be on the order of 1029 joules; equivalent to the total energy release due to earthquakes through geologic time. Such an event could explain the asteroid belt. Such phase changes would only occur at specific mass to volume ratios, and an example of such a phase change would be the rapid formation or dissolution of a solid core component.