Convergent evolution


Convergent evolution is the independent evolution of similar features in species of different lineages. Convergent evolution creates analogous structures that have similar form or function but were not present in the last common ancestor of those groups. The cladistic term for the same phenomenon is homoplasy. The recurrent evolution of flight is a classic example, as flying insects, birds, pterosaurs, and bats have independently evolved the useful capacity of flight. Functionally similar features that have arisen through convergent evolution are analogous, whereas homologous structures or traits have a common origin but can have dissimilar functions. Bird, bat, and pterosaur wings are analogous structures, but their forelimbs are homologous, sharing an ancestral state despite serving different functions.
The opposite of convergent evolution is divergent evolution, where related species evolve different traits. Convergent evolution is similar to parallel evolution, which occurs when two independent species evolve in the same direction and thus independently acquire similar characteristics; for instance, gliding frogs have evolved in parallel from multiple types of tree frog.
Many instances of convergent evolution are known in plants, including the repeated development of C4 photosynthesis, seed dispersal by fleshy fruits adapted to be eaten by animals, and carnivory.

Overview

In morphology, analogous traits arise when different species live in similar ways and/or a similar environment, and so face the same environmental factors. When occupying similar ecological niches similar problems can lead to similar solutions. The British anatomist Richard Owen was the first to identify the fundamental difference between analogies and homologies.
In biochemistry, physical and chemical constraints on mechanisms have caused some active site arrangements such as the catalytic triad to evolve independently in separate enzyme superfamilies.
In his 1989 book Wonderful Life, Stephen Jay Gould argued that if one could "rewind the tape of life the same conditions were encountered again, evolution could take a very different course." Simon Conway Morris disputes this conclusion, arguing that convergence is a dominant force in evolution, and given that the same environmental and physical constraints are at work, life will inevitably evolve toward an "optimum" body plan, and at some point, evolution is bound to stumble upon intelligence, a trait presently identified with at least primates, corvids, and cetaceans.

Distinctions

Cladistics

In cladistics, a homoplasy is a trait shared by two or more taxa for any reason other than that they share a common ancestry. Taxa which do share ancestry are part of the same clade; cladistics seeks to arrange them according to their degree of relatedness to describe their phylogeny. Homoplastic traits caused by convergence are therefore, from the point of view of cladistics, confounding factors which could lead to an incorrect analysis.

Atavism

It can be difficult to tell whether a trait has been lost and then re-evolved convergently, or whether a gene has simply been switched off and then re-enabled later. Such a re-emerged trait is called an atavism. From a mathematical standpoint, an unused gene has a steadily decreasing probability of retaining potential functionality over time. The time scale of this process varies greatly in different phylogenies; in mammals and birds, there is a reasonable probability of a gene's remaining in the genome in a potentially functional state for around 6 million years.

Parallel vs. convergent evolution

When two species are similar in a particular character, evolution is defined as parallel if the ancestors were also similar, and convergent if they were not. Some scientists have argued that there is a continuum between parallel and convergent evolution, while others maintain that despite some overlap, there are still important distinctions between the two.
When the ancestral forms are unspecified or unknown, or the range of traits considered is not clearly specified, the distinction between parallel and convergent evolution becomes more subjective. For instance, the striking example of similar placental and marsupial forms is described by Richard Dawkins in The Blind Watchmaker as a case of convergent evolution, because mammals on each continent had a long evolutionary history prior to the extinction of the dinosaurs under which to accumulate relevant differences.

At molecular level

Proteins

Tertiary structures

Many proteins share analogous structural elements that arose independently across different genomes. There are several examples of convergent protein motifs sharing similar arrangements of structural elements. Whole protein structures too have arisen through convergent evolution.

Protease active sites

The enzymology of proteases provides some of the clearest examples of convergent evolution. These examples reflect the intrinsic chemical constraints on enzymes, leading evolution to converge on equivalent solutions independently and repeatedly.
Serine and cysteine proteases use different amino acid functional groups as a nucleophile. To activate that nucleophile, they orient an acidic and a basic residue in a catalytic triad. The chemical and physical constraints on enzyme catalysis have caused identical triad arrangements to evolve independently more than 20 times in different enzyme superfamilies.
Threonine proteases use the amino acid threonine as their catalytic nucleophile. Unlike cysteine and serine, threonine is a secondary alcohol. The methyl group of threonine greatly restricts the possible orientations of triad and substrate, as the methyl clashes with either the enzyme backbone or the histidine base. Consequently, most threonine proteases use an N-terminal threonine in order to avoid such steric clashes.
Several evolutionarily independent enzyme superfamilies with different protein folds use the N-terminal residue as a nucleophile. This commonality of active site but difference of protein fold indicates that the active site evolved convergently in those families.

Cone snail and fish insulin

Conus geographus produces a distinct form of insulin that is more similar to fish insulin protein sequences than to insulin from more closely related molluscs, suggesting convergent evolution, though with the possibility of horizontal gene transfer.

Ferrous iron uptake via protein transporters in land plants and chlorophytes

Distant homologues of the metal ion transporters ZIP in land plants and chlorophytes have converged in structure, likely to take up Fe2+ efficiently. The IRT1 proteins from Arabidopsis thaliana and rice have extremely different amino acid sequences from Chlamydomonass IRT1, but their three-dimensional structures are similar, suggesting convergent evolution.

Na+,K+-ATPase and Insect resistance to cardiotonic steroids

Many examples of convergent evolution exist in insects in terms of developing resistance at a molecular level to toxins. One well-characterized example is the evolution of resistance to cardiotonic steroids via amino acid substitutions at well-defined positions of the α-subunit of Na+,K+-ATPase. Variation in ATPalpha has been surveyed in various CTS-adapted species spanning six insect orders. Among 21 CTS-adapted species, 58 of 76 amino acid substitutions at sites implicated in CTS resistance occur in parallel in at least two lineages. 30 of these substitutions occur at just two sites in the protein. CTS-adapted species have also recurrently evolved neo-functionalized duplications of ATPalpha, with convergent tissue-specific expression patterns.

Nucleic acids

Convergence occurs at the level of DNA and the amino acid sequences produced by translating structural genes into proteins. Studies have found convergence in amino acid sequences in echolocating bats and the dolphin; among marine mammals; between giant and red pandas; and between the thylacine and canids. Convergence has also been detected in a type of non-coding DNA, cis-regulatory elements, such as in their rates of evolution; this could indicate either positive selection or relaxed purifying selection.

In animals

Bodyplans

Swimming animals including fish such as herrings, marine mammals such as dolphins, and ichthyosaurs all converged on the same streamlined shape. A similar shape and swimming adaptations are even present in molluscs, such as Phylliroe. The fusiform bodyshape adopted by many aquatic animals is an adaptation to enable them to travel at high speed in a high drag environment. Similar body shapes are found in the earless seals and the eared seals: they still have four legs, but these are strongly modified for swimming.
The marsupial fauna of Australia and the placental mammals of the Old World have several strikingly similar forms, developed in two clades, isolated from each other. The body, and especially the skull shape, of the thylacine converged with those of Canidae such as the red fox, Vulpes vulpes.

Echolocation

As a sensory adaptation, echolocation has evolved separately in cetaceans and bats, but from the same genetic mutations.

Electric fishes

The Gymnotiformes of South America and the Mormyridae of Africa independently evolved passive electroreception. Around 20 million years after acquiring that ability, both groups evolved active electrogenesis, producing weak electric fields to help them detect prey.

Eyes

One of the best-known examples of convergent evolution is the camera eye of cephalopods, vertebrates and cnidarians. Their last common ancestor had at most a simple photoreceptive spot, but a range of processes led to the progressive refinement of camera eyes—with one sharp difference: the cephalopod eye is "wired" in the opposite direction, with blood and nerve vessels entering from the back of the retina, rather than the front as in vertebrates. As a result, vertebrates have a blind spot.