Connected car
A connected car is a car that can communicate bidirectionally with other systems outside of the car. This connectivity can be used to provide services to passengers or to support or enhance self-driving functionality. For safety-critical applications, it is anticipated that cars will also be connected using dedicated short-range communications or cellular radios, operating in the FCC-granted 5.9 GHz band with very low latency.
History
was the first automaker to bring the first connected car features to market with OnStar in 1996 in Cadillac DeVille, Seville and Eldorado. OnStar was created by GM working with Motorola Automotive. The primary purpose was safety and to get emergency help to a vehicle when there was an accident. The sooner medical helps arrives the more likely the drivers and passengers would survive. A cellular telephone call would be routed to a call center where the agent sent help.At first, OnStar only worked with voice but when cellular systems added data the system was able to send GPS location data to the call center. After the success of OnStar, many automakers followed with similar safety programs that usually come with a free trial for a new car and then a paid subscription after the trial is over.
Remote diagnostics were introduced in 2001. By 2003 connected car services included vehicle health reports, turn-by-turn directions and a network access device. Data-only telematics were first offered in 2007, transmitting telemetry data without a voice component.
In the summer of 2014, Audi was the first automaker to offer 4G LTE Wi-Fi Hotspots access and the first mass deployment of 4G LTE was by General Motors.
By 2015, OnStar had processed 1 billion requests from customers.
The AA introduced Car Genie, the first piece of connected car technology in the UK that connects directly to a breakdown service, not only warning of issues with car health, but intervening directly with a phone call to customers to help them prevent a breakdown.
In 2017, European technology start-up Stratio Automotive provides over 10,000 vehicles predictive intelligence enabling fleet operators to better manage and maintain their vehicles.
Types of connectivity
There are 7 ways a vehicle can be connected to its surroundings and communicate with them. These connections are all a part of Vehicle to Everything - V2X:- V2I "Vehicle to Infrastructure": The technology captures data generated by the vehicle and provides information about the infrastructure to the driver. The V2I technology communicates information about safety, mobility or environment-related conditions, forming a key part of an intelligent transportation system.
- V2V "Vehicle to Vehicle": The technology communicates information about speed and position of surrounding vehicles through a wireless exchange of information. The goal is to avoid accidents, ease traffic congestions and have a positive impact on the environment.
- V2C "Vehicle to Cloud": The technology exchanges information about and for applications of the vehicle with a cloud system. This allows the vehicle to use information from other, though the cloud connected industries like energy, transportation and smart homes and make use of IoT.
- V2P "Vehicle to Pedestrian": The technology senses information about its environment and communicates it to other vehicles, infrastructure and personal mobile devices. This enables the vehicle to communicate with pedestrians and is intended to improve safety and mobility on the road.
- V2D "Vehicle to Device": The technology connects your vehicle to any other device such as bluetooth or mobile phones. This is how vehicles can connect to a multitude of apps built to improve driver safety and experience.
- V2N "Vehicle to Network": The technology allows vehicles to utilize cell tower networks to communicate with nearby vehicles and road infrastructure. Vehicles can receive alerts and communicate with nearby data centers connected to WiFi or 5G.
- V2G "Vehicle to Grid": The technology allows electric vehicles to communicate with the power grid. This technology allows for two-way energy flow; not only can EVs draw energy from the power grid to charge their batteries, but they can also send energy back to the grid from their batteries when needed. V2G enables power companies to use parked electric vehicles as a sort of decentralized energy storage solution to help balance demand on the electrical grid.
Categories of applications
- Single vehicle applications: In-car content and service applications implemented by a single vehicle in connection with a cloud or backoffice.
- Cooperative safety and efficiency applications: they provide connectivity between vehicles directly have to work cross-brand and cross-borders and require standards and regulation. Some may be convenience applications, others safety, which may require regulation.
- Single-vehicle applications: concierge features provided by automakers or apps alert the driver of the time to leave to arrive on time from a calendar and send text message alerts to friends or business associates to alert them of arrival times such as BMW Connected NA that also helps find parking or gas stations. The European eCall would be an example of a single vehicle safety application that is mandatory in the EU.
- Cooperative safety-of-life and cooperative efficiency: forward collision warning, lane change warning/blind spot warning, emergency brake light warning, intersection movement assist, emergency vehicle approaching, road works warning, automatic notification of crashes, notification of speeding and safety alerts.
- Mobility management: functions that allow the driver to reach a destination quickly, safely, and in a cost-efficient manner
- Commerce: functions enabling users to purchase good or services while on-the-go
- Vehicle management: functions that aid the driver in reducing operating costs and improving ease of use
- Breakdown prevention: connected to a breakdown service, with a back end algorithm predicting breakdowns and an outbound service intervening via phone, SMS or push notification
- Safety: functions that warn the driver of external hazards and internal responses of the vehicle to hazards
- Entertainment: functions involving the entertainment of the driver and passengers
- Driver assistance: functions involving partially or fully automatic driving
- Well-being: functions involving the driver's comfort and ability and fitness to drive
Single-vehicle applications
On January 6, 2014, Google announced the formation of the Open Automotive Alliance a global alliance of technology and auto industry leaders committed to bringing the Android platform to cars starting in 2014. The OAA includes Audi, GM, Google, Honda, Hyundai and Nvidia.
On March 3, 2014, Apple announced a new system to connect iPhone 5/5c/5S to car infotainment units using iOS 7 to cars via a Lightning connector, called CarPlay.
Android Auto was announced on June 25, 2014, to provide a way for Android smartphones to connect to car infotainment systems.
Increasingly, connected cars are taking advantage of the rise of smartphones, and apps are available to interact with the car from any distance. Users can unlock their cars, check the status of batteries on electric cars, find the location of the car, or remotely activate the climate control system.
Innovations to be introduced until 2020 include the full integration of smartphone applications, such as the linkage of the smartphone calendar, displaying it on the car's windshield and automatic address searches in the navigation system for calendar entries. In the longer term, navigation systems will be integrated in the windshield and through augmented reality project digital information, like alerts and traffic information, onto real images from the driver's perspective.
Near-term innovations regarding Vehicle Relationship Management entail advanced remote services, such as GPS tracking and personalized usage restrictions. Further, maintenance services like over-the-air tune-ups, requiring the collaboration of car dealers, OEMs and service centers, are under development.
Despite various market drivers there are also barriers that have prevented the ultimate breakthrough of the connected car in the past few years. One of these is the fact that customers are reluctant to pay the extra costs associated with embedded connectivity and instead use their smartphones as solution for their in-car connectivity needs. Because this barrier is likely to continue, at least in the short-term, car manufacturers are turning to smartphone integration in an effort to satisfy consumer demand for connectivity.
Cooperative safety-of-life and efficiency
These services relate to Advanced Driver-Assistance Systems, that depend on the sensory input of more than one vehicle and enable instant reaction through automatic monitoring, alerting, braking and steering activities. They depend on instant vehicle-to-vehicle communication, as well as infrastructure, functioning across brands and national borders and offering cross-brand and cross-border levels of privacy and security. The US National Highway Traffic Safety Administration for that reason has argued for regulation in its Advance Notice of Proposed Rulemaking on V2V Communication and argued the case in US Congress. NHTSA began the rule-making process on December 13, 2016, proposing to mandate dedicated short-range communications technology in new light vehicles. Under this proposed rule, vehicles would broadcast a defined data packet, the "basic safety message" up to ten times per second, indicating vehicle location, heading, and speed. In March, 2017, GM became the first US automaker to provide DSRC as standard equipment on a production automobile, the Cadillac CTS. The US also has appropriate standards – IEEE 802.11p – and frequency rules in place. In Europe a frequency is harmonised for transport safety and a harmonised standard, called ETSI ITS-G5, are in place. In the EU there is no push to oblige vehicle manufacturers to introduce connect. Discussions about a regulatory framework for privacy and security are ongoing.Technologically speaking cooperative applications can be implemented. Here the regulatory framework is the main obstacle to implementation, questions like privacy and security need to be addressed. British weekly "The Economist" even argues that the matter is regulatory driven.