Computer-integrated manufacturing
Computer-integrated manufacturing is the manufacturing approach of using computers to control the entire production process. This integration allows individual processes to exchange information with each part. Manufacturing can be faster and less error-prone by the integration of computers. Typically CIM relies on closed-loop control processes based on real-time input from sensors. It is also known as flexible design and manufacturing.
Overview
- Computer-integrated manufacturing is used in automotive, aviation, space, and ship building industries.
- The term "computer-integrated manufacturing" is both a method of manufacturing and the name of a computer-automated system in which individual engineering, production, marketing, and support functions of a manufacturing enterprise are organized.
- In a CIM system functional areas such as design, analysis, planning, purchasing, cost accounting, inventory control, and distribution are linked through the computer with factory floor functions such as materials handling and management, providing direct control and monitoring of all the operation.
CIM implies that there are at least two computers exchanging information, e.g. the controller of an arm robot and a micro-controller.
CIM is most useful where a high level of ICT is used in the company or facility, such as CAD/CAM systems, and the availability of process planning and its data.
History
The idea of "digital manufacturing" became prominent in the early 1970s, with the release of Dr. Joseph Harrington's book, Computer Integrated Manufacturing. However, it was not until 1984 when computer-integrated manufacturing began to be developed and promoted by machine tool manufacturers and the Computer and Automated Systems Association and Society of Manufacturing Engineers.system.jpg|thumb|320px|CIM & production control system: Computer Integrated Manufacturing is used to describe the complete automation of a manufacturing plant, with all processes running under computer control and digital information tying them together.
Key challenges
There are three major challenges to development of a smoothly operating computer-integrated manufacturing system:- Integration of components from different suppliers: When different machines, such as CNC, conveyors and robots, are using different communications protocols may cause problems.
- Data integrity: The higher the degree of automation, the more critical is the integrity of the data used to control the machines. While the CIM system saves on labor of operating the machines, it requires extra human labor in ensuring that there are proper safeguards for the data signals that are used to control the machines.
- Process control: Computers may be used to assist the human operators of the manufacturing facility, but there must always be a competent engineer on hand to handle circumstances which could not be foreseen by the designers of the control software.
Subsystems
Computer-aided techniques:
- CAD
- CAE
- CAM
- CAPP
- CAQ
- PPC
- ERP
- A business system integrated by a common database.
- CNC, Computer numerical controlled machine tools
- DNC, Direct numerical control machine tools
- PLCs, Programmable logic controllers
- Robotics
- Computers
- Software
- Controllers
- Networks
- Interfacing
- Monitoring equipment
- FMS,
- ASRS, automated storage and retrieval system
- AGV, automated guided vehicle
- Robotics
- Automated conveyance systems
- Lean manufacturing
CIMOSA
CIMOSA provides a solution for business integration with four types of products:
- The CIMOSA Enterprise Modeling Framework, which provides a reference architecture for enterprise architecture
- CIMOSA IIS, a standard for physical and application integration.
- CIMOSA Systems Life Cycle, is a life cycle model for CIM development and deployment.
- Inputs to standardization, basics for international standard development.