Climate change in Saskatchewan


The effects of climate change in the Canadian province of Saskatchewan are being observed in parts of the province. There is evidence of reduction of biomass in Saskatchewan's boreal forests that is linked by researchers to drought-related water stress stemming from global warming, most likely caused by greenhouse gas emissions. While studies, as early as 1988 have shown that climate change will affect agriculture, whether the effects can be mitigated through adaptations of cultivars, or crops, is less clear. Resiliency of ecosystems may decline with large changes in temperature. The provincial government has responded to the threat of climate change by introducing a plan to reduce carbon emissions, "The Saskatchewan Energy and Climate Change Plan", in June 2007.

Species diversity

Although the adaptive capacity of local species cannot be assumed to be nil, the impacts of anthropogenic climate change, or global warming, are likely to be too rapid for evolution to allow local adaptation. Species of special concern are the piping plover and lake sturgeon, because they are currently IUCN red-listed species their life cycle is dependent on current hydrological regimes. The effects of climate change are also expected to affect the majority of Saskatchewans habitat types, and therefore, changes to the entire ecology of the province are expected.

Phenology

is expected to alter the phenology, or timing of lifecycle events, of species worldwide. Environmental cues such as seasonal shifts in temperature and photoperiod influence processes such as germination, spring growth, breeding or flowering season, seed set, metamorphosis, migration, and senescence. Increasing winter and spring temperatures over the last century, particularly in northern latitudes, have resulted in rapid phenological shifts in many species. The magnitude and direction of these shifts are unpredictable and vary with latitude, topography, and the species in question. As phenological responses have a high degree of phenotypic plasticity, observations of species-specific phenological trends can be used as a sensitive and dynamic indicator of climate change effects on biota.
Although little published information is available specifically on phenological responses to climate change in Saskatchewan, these are likely to follow general worldwide and regional trends. One such trend is advanced flowering in early-season plants and delayed flowering in late-season plants, leading to increased risk of reproductive failure due to frost damage from cold snaps. For instance, trembling aspen in Alberta has been shown to have advanced in flowering date by 26 days over the past century. Changes in flowering phenology also have the potential to greatly impact plant-pollinator dynamics. Asynchronies between flower availability and pollinator activity may lead to lower pollination rates and declines in ecologically and economically important insect species. This in turn could impact insectivorous consumers and thus have cascading effects on entire food chains.
Other insect species may benefit from warmer temperatures. Increased voltinism and winter survival in many insects has the potential for dramatic population increases in pest species such as foliage-eating Lepidoptera and bark-boring Coleoptera.
Alterations in phenology may have important implications for Saskatchewan agriculture, horticulture, forestry, and traditional First Nations plant uses, as well as large-scale cascading effects on communities and ecosystems. More studies are needed, both species-specific and on interactions between species, to better understand potential future responses of Saskatchewan biota to climate change. Programs such as , established in Canada in 1995, encourage citizen-based ecological monitoring as a method of phenological record-keeping. Such long-term monitoring will help us to better anticipate and adapt to these temporal changes and their resulting consequences.

Ecozones

Saskatchewan is divided into four different terrestrial ecozones including the Taiga Shield, Boreal Shield, Boreal Plains and Prairies. These regions are determined by features such as natural—landforms, soils, water features, vegetation and climate, however with climate change these features are beginning to change.

Taiga shield

The Taiga Shield is predicted to change in species composition if global warming continues in the future. The permafrost on the taiga has shifted northward by approximately 150 kilometres in the last 50 years due to warmer, wetter summer conditions, and increased snowfall in the winter. Because of this shift, lichens, which commonly dominate the bogs in this area, have been replaced by vegetation generally found in dry mesic lichen woodlands. It is predicted that if warming of this ecozone continues, the abundance of lichens, which is still currently high, will decrease considerably. Not only is species composition within the Taiga Shield expected to change in the future, but its boundaries are anticipated to shift northward onto the tundra as well. It is likely that with this northward shift, the way in which forests form will be altered in that they will become shorter and more aggregated. Deformities of individual trees is also likely to be seen due to wind stress from colonizing the open tundra.

Boreal shield and boreal plains

According to the Intergovernmental Panel on Climate Change, the boreal forest is more sensitive to climate change than either temperate or tropical forests and will be most affected by predicted future warming. Projected changes in both temperature and moisture patterns suggest the boreal ecozones will be subjected to changes in both boundaries and natural disturbance regimes.
Not only is it predicted that the boreal ecozones' boundaries will shift northward with global warming, its range is expected to shrink as well. These changes will likely result in both a loss of biodiversity, and a loss of an economically valuable resource for forestry.
Fire is an extremely important natural disturbance in boreal ecozones that is required for the regeneration of stands. Historical records show an increase in fire frequency and intensity in recent years because of drier conditions, and this trend is predicted to continue into the future with global warming. This change in the fire regime can have impacts on species composition and the overall makeup of the boreal forest.

Prairies

The general circulation models for Saskatchewan's prairie ecozone predict an extremely arid future, which is similar to conditions seen after the Holocene. From these GCMs it has been inferred that the prairies will be subjected to intense desertification and erosion because periods of drought may last ten or more consecutive years. As well, because of this expected warm, dry climate, plants that exhibit C4 carbon fixation will become more competitive than plants that display C3 carbon fixation, and will likely become dominant in the future. Another implication of global warming for the prairie ecozone is on the Prairie Pothole Region. This is the area of hundreds of depressions in the landscape formed by past glaciation. The region comprises both permanent and semi-permanent wetlands, which may experience changes in water depth, areal extent and length of wet and dry cycles. These changes will not only have implications for vegetation surrounding the wetlands, but for waterfowl and other organisms inhabiting them as well.

Impacts

Wetlands and water resources

Although Saskatchewan may be globally reduced recognized for its vast expanses of fertile agricultural lands, the Southern portion of the province is situated in the heart of the prairie pothole region, an area renowned for productive wetlands. Within the PPR, Saskatchewan is estimated to have over 1.5 million wetlands covering over 1.7 million hectares. Saskatchewan wetlands are very dynamic ecosystems, as they include a wide variety of shorebirds, amphibians, reptiles, mammals, invertebrates, and aquatic and terrestrial plants. Also, Saskatchewan provides essential habitat for millions of migrating and nesting waterfowl each year. In fact, the number and diversity of breeding waterfowl are directly dependent on the availability of wetlands found throughout the prairie pothole region. Apart from being a home to wildlife, wetlands provide Saskatchewan residents with valuable ecosystem services, such as water quality improvement, flood control, nutrient cycling and carbon sequestration.
Recent data produced by Regional Climate Models have predicted that the temperature in the prairie pothole region in Saskatchewan will rise between 1.8–4 ˚C by the year 2100. Accompanying the rise in temperature, experts anticipate the prairie pothole region will experience an intensified Hydrologic cycle leading to an increase in the frequency of drought periods and torrential rains. Unfortunately, Saskatchewan wetlands have been identified as particularly vulnerable to these changes in climate, as many wetlands are shallow, and have high evaporation rates.
Inter-annual variation between wet and dry periods in which abundant rainfall is followed by a drought period have been a commonality in Saskatchewan wetlands since their formation nearly 14,000 years ago. However, unprecedented changes in climate expected in the prairies have many experts concerned that Saskatchewan wetland ecosystems will not be able tolerate the heat, and intensified wet/dry cycles., For example, Sorenson et al. predicted that with a doubling of carbon dioxide, the prairie pothole duck population would be cut in half by the year 2060 due to a loss of wetland habitat. It remains unknown how wetland organisms will respond to oncoming climate change; yet, perhaps the biggest uncertainty is predicting the way Saskatchewan citizens decide to share their water with vulnerable wetland ecosystems. As the climate changes in the province of Saskatchewan, improved attention to water management may be critical to protecting Saskatchewan's fragile wetlands.
Currently, Saskatchewan Environment, SaskWater, and the Saskatchewan Watershed Authority are responsible for water quality management in the province. Climate Change will reduce water resource availability and quality, accordingly these organizations are investigating the circumstances that they will eventually encounter. Increased climate variability indicates that stream flow of all rivers will be smaller in magnitude, with flow rates becoming more unpredictable, especially in rivers with many dams, such as the South Saskatchewan River. This means that reservoir management, especially of Lake Diefenbaker, will become more difficult because baseline data will not be available for the specific climate parameters. Cumulatively, the changes to Saskatchewan's wetlands and water resources will have significant impacts of native flora and fauna.