Holographic principle
The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region – such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft in 1993, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Susskind said, "The three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978 that string theory admits a lower-dimensional description from which gravity emerges in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.
The holographic principle was inspired by the Bekenstein bound of black hole thermodynamics, which conjectures that the maximum entropy in any region scales with the radius, rather than cubed as might be expected. In the case of a black hole, the insight was that the information content of all the objects that have fallen into the hole might be entirely contained in surface fluctuations of the event horizon. The holographic principle resolves the black hole information paradox within the framework of string theory. However, there exist classical solutions to the Einstein equations that allow values of the entropy larger than those allowed by an area law, hence in principle larger than those of a black hole. These are the so-called "Wheeler's bags of gold". The existence of such solutions conflicts with the holographic interpretation, and their effects in a quantum theory of gravity including the holographic principle are not yet fully understood.
High-level summary
The physical universe is widely seen to be composed of "matter" and "energy". In his 2003 article published in Scientific American magazine, Jacob Bekenstein speculatively summarized a current trend started by John Archibald Wheeler, which suggests scientists may "regard the physical world as made of information, with energy and matter as incidentals". Bekenstein asks "Could we, as William Blake memorably penned, 'see a world in a grain of sand', or is that idea no more than 'poetic license'?", referring to the holographic principle.Unexpected connection
Bekenstein's topical overview "A Tale of Two Entropies" describes potentially profound implications of Wheeler's trend, in part by noting a previously unexpected connection between the world of information theory and classical physics. This connection was first described shortly after the seminal 1948 papers of American applied mathematician Claude Shannon introduced today's most widely used measure of information content, now known as Shannon entropy. As an objective measure of the quantity of information, Shannon entropy has been enormously useful, as the design of all modern communications and data storage devices, from cellular phones to modems to hard disk drives and DVDs, rely on Shannon entropy.In thermodynamics, entropy is popularly described as a measure of the "disorder" in a physical system of matter and energy. In 1877, Austrian physicist Ludwig Boltzmann described it more precisely in terms of the number of distinct microscopic states that the particles composing a macroscopic "chunk" of matter could be in, while still "looking" like the same macroscopic "chunk". As an example, for the air in a room, its thermodynamic entropy would equal the logarithm of the count of all the ways that the individual gas molecules could be distributed in the room and all the ways they could be moving.
Energy, matter, and information equivalence
Shannon's efforts to find a way to quantify the information contained in, for example, a telegraph message, led him unexpectedly to a formula with the same form as Boltzmann's. In an article in the August 2003 issue of Scientific American titled "Information in the Holographic Universe", Bekenstein summarizes that "Thermodynamic entropy and Shannon entropy are conceptually equivalent: the number of arrangements that are counted by Boltzmann entropy reflects the amount of Shannon information one would need to implement any particular arrangement" of matter and energy. The only salient difference between the thermodynamic entropy of physics and Shannon's entropy of information is in the units of measure; the former is expressed in units of energy divided by temperature, the latter in essentially dimensionless "bits" of information.The holographic principle states that the entropy of ordinary mass is also proportional to surface area and not volume; that volume itself is illusory and the universe is really a hologram which is isomorphic to the information "inscribed" on the surface of its boundary.
AdS/CFT correspondence
The anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality named after the Argentinian physicist Juan Maldacena or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.The duality represents a major advance in understanding of string theory and quantum gravity. This is because it provides a non-perturbative formulation of string theory with certain boundary conditions and because it is the most successful realization of the holographic principle.
It also provides a powerful toolkit for studying strongly coupled quantum field theories. Much of the usefulness of the duality results from a strong-weak duality: when the fields of the quantum field theory are strongly interacting, the ones in the gravitational theory are weakly interacting and thus more mathematically tractable. This fact has been used to study many aspects of nuclear and condensed matter physics by translating problems in those subjects into more mathematically tractable problems in string theory.
The AdS/CFT correspondence was first proposed by Juan Maldacena in late 1997. Important aspects of the correspondence were elaborated in articles by Steven Gubser, Igor Klebanov, and Alexander Markovich Polyakov, and by Edward Witten. By 2015, Maldacena's article had over 10,000 citations, becoming the most highly cited article in the field of high energy physics.
Black hole entropy
An object with relatively high entropy is microscopically random, like a hot gas. A known configuration of classical fields has zero entropy: there is nothing random about electric and magnetic fields, or gravitational waves. Since black holes are exact solutions of Einstein's equations, they were thought not to have any entropy.But Jacob Bekenstein noted that this leads to a violation of the second law of thermodynamics. If one throws a hot gas with entropy into a black hole, once it crosses the event horizon, the entropy would disappear. The random properties of the gas would no longer be seen once the black hole had absorbed the gas and settled down. One way of salvaging the second law is if black holes are in fact random objects with an entropy that increases by an amount greater than the entropy of the consumed gas.
Given a fixed volume, a black hole whose event horizon encompasses that volume should be the object with the highest amount of entropy. Otherwise, imagine something with a larger entropy, then by throwing more mass into that something, we obtain a black hole with less entropy, violating the second law.
In a sphere of radius R, the entropy in a relativistic gas increases as the energy increases. The only known limit is gravitational; when there is too much energy, the gas collapses into a black hole. Bekenstein used this to put an upper bound on the entropy in a region of space, and the bound was proportional to the area of the region. He concluded that the black hole entropy is directly proportional to the area of the event horizon. Gravitational time dilation causes time, from the perspective of a remote observer, to stop at the event horizon. Due to the natural limit on maximum speed of motion, this prevents falling objects from crossing the event horizon no matter how close they get to it. Since any change in quantum state requires time to flow, all objects and their quantum information state stay imprinted on the event horizon. Bekenstein concluded that from the perspective of any remote observer, the black hole entropy is directly proportional to the area of the event horizon.
Stephen Hawking had shown earlier that the total horizon area of a collection of black holes always increases with time. The horizon is a boundary defined by light-like geodesics; it is those light rays that are just barely unable to escape. If neighboring geodesics start moving toward each other they eventually collide, at which point their extension is inside the black hole. So the geodesics are always moving apart, and the number of geodesics which generate the boundary, the area of the horizon, always increases. Hawking's result was called the second law of black hole thermodynamics, by analogy with the law of entropy increase.
At first, Hawking did not take the analogy too seriously. He argued that the black hole must have zero temperature, since black holes do not radiate and therefore cannot be in thermal equilibrium with any black body of positive temperature. Then he discovered that black holes do radiate. When heat is added to a thermal system, the change in entropy is the increase in mass–energy divided by temperature:
If black holes have a finite entropy, they should also have a finite temperature. In particular, they would come to equilibrium with a thermal gas of photons. This means that black holes would not only absorb photons, but they would also have to emit them in the right amount to maintain detailed balance.
Time-independent solutions to field equations do not emit radiation, because a time-independent background conserves energy. Based on this principle, Hawking set out to show that black holes do not radiate. But, to his surprise, a careful analysis convinced him that they do, and in just the right way to come to equilibrium with a gas at a finite temperature. Hawking's calculation fixed the constant of proportionality at 1/4; the entropy of a black hole is one quarter its horizon area in Planck units.
The entropy is proportional to the logarithm of the number of microstates, the enumerated ways a system can be configured microscopically while leaving the macroscopic description unchanged. Black hole entropy is deeply puzzling – it says that the logarithm of the number of states of a black hole is proportional to the area of the horizon, not the volume in the interior.
There were attempts to generalize the entropy bound to more general spacetimes, notably through the Fischler–Susskind holographic bound. Later, Raphael Bousso generalized this to the covariant entropy bound based upon null hypersurfaces which works in any surface in any spacetimes.