Blood bank


A blood bank is a center where blood gathered as a result of blood donation is stored and preserved for later use in blood transfusion. The term "blood bank" typically refers to a department of a hospital usually within a clinical pathology laboratory where the storage of blood product occurs and where pre-transfusion and blood compatibility testing is performed. However, it sometimes refers to a collection center, and some hospitals also perform collection. Blood banking includes tasks related to blood collection, processing, testing, separation, and storage.
For blood donation agencies in various countries, see list of blood donation agencies and list of blood donation agencies in the United States.

Types of blood transfused

Several types of blood transfusion exist:
  • Whole blood, which is blood transfused without separation.
  • Red blood cells or packed cells is transfused to patients with anemia/iron deficiency. It also helps to improve the oxygen saturation in blood. It can be stored at 2.0 °C-6.0 °C for 35–45 days.
  • Platelet transfusion is transfused to those with low platelet count. Platelets can be stored at room temperature for up to 5–7 days. Single donor platelets, which have a more platelet count but it is bit expensive than regular.
  • Plasma transfusion is indicated to patients with liver failure, severe infections or serious burns. Fresh frozen plasma can be stored at a very low temperature of −30 °C for up to 12 months. The separation of plasma from a donor's blood is called plasmapheresis.

    History

While the first blood transfusions were made directly from donor to receiver before coagulation, it was discovered that by adding anticoagulant and refrigerating the blood it was possible to store it for some days, thus opening the way for the development of blood banks. John Braxton Hicks was the first to experiment with chemical methods to prevent the coagulation of blood at St Mary's Hospital, London, in the late 19th century. His attempts, using phosphate of soda, however, were unsuccessful.
The first non-direct transfusion was performed on March 27, 1914, by the Belgian doctor Albert Hustin, though this was a diluted solution of blood. The Argentine doctor Luis Agote used a much less diluted solution in November of the same year. Both used sodium citrate as an anticoagulant.

First World War

The First World War acted as a catalyst for the rapid development of blood banks and transfusion techniques. Inspired by the need to give blood to wounded soldiers in the absence of a donor, Francis Peyton Rous at the Rockefeller University wanted to solve the problems of blood transfusion. With a colleague, Joseph R. Turner, he made two critical discoveries: blood typing was necessary to avoid blood clumping and blood samples could be preserved using chemical treatment. Their report in March 1915 to identify possible blood preservative was of a failure. The experiments with gelatine, agar, blood serum extracts, starch and beef albumin proved useless.
In June 1915, they made the first important report in the Journal of the American Medical Association that agglutination could be avoided if the blood samples of the donor and recipient were tested before. They developed a rapid and simple method for testing blood compatibility in which coagulation and the suitability of the blood for transfusion could be easily determined. They used sodium citrate to dilute the blood samples, and after mixing the recipient's and donor's blood in 9:1 and 1:1 parts, blood would either clump or remain watery after 15 minutes. Their result with a medical advice was clear:
clumping is present in the 9:1 mixture and to a less degree or not at all in the 1:1 mixture, it is certain that the blood of the patient agglutinates that of the donor and may perhaps hemolyze it. Transfusion in such cases is dangerous. Clumping in the 1:1 mixture with little or none in the 9:1 indicates that the plasma of the prospective donor agglutinates the cells of the prospective recipient. The risk from transfusing is much less under such circumstances, but it may be doubted whether the blood is as useful as one which does not and is not agglutinated. A blood of the latter kind should always be chosen if possible.
Rous was well aware that Austrian physician Karl Landsteiner had discovered blood types a decade earlier, but the practical usage was not yet developed, as he described: "The fate of Landsteiner's effort to call attention to the practical bearing of the group differences in human bloods provides an exquisite instance of knowledge marking time on technique. Transfusion was still not done because, the risk of clotting was too great." In February 1916, they reported in the Journal of Experimental Medicine the key method for blood preservation. They replaced the additive, gelatine, with a mixture sodium citrate and glucose solution and found: "in a mixture of 3 parts of human blood, 2 parts of isotonic citrate solution, and 5 parts of isotonic dextrose solution, the cells remain intact for about 4 weeks." A separate report indicates the use of citrate-saccharose could maintain blood cells for two weeks. They noticed that the preserved bloods were just like fresh bloods and that they "function excellently when reintroduced into the body." The use of sodium citrate with sugar, sometimes known as Rous-Turner solution, was the main discovery that paved the way for the development of various blood preservation methods and blood bank.
Canadian Lieutenant Lawrence Bruce Robertson was instrumental in persuading the Royal Army Medical Corps to adopt the use of blood transfusion at the Casualty Clearing Stations for the wounded. In October 1915, Robertson performed his first wartime transfusion with a syringe to a patient who had multiple shrapnel wounds. He followed this up with four subsequent transfusions in the following months, and his success was reported to Sir Walter Morley Fletcher, director of the Medical Research Committee.
Robertson published his findings in the British Medical Journal in 1916, and—with the help of a few like minded individuals —was able to persuade the British authorities of the merits of blood transfusion. Robertson went on to establish the first blood transfusion apparatus at a Casualty Clearing Station on the Western Front in the spring of 1917.
Oswald Hope Robertson, a medical researcher and officer, worked with Rous at the Rockefeller between 1915 and 1917, and learned the blood matching and preservation methods. He was attached to the RAMC in 1917, where he was instrumental in establishing the first blood banks, with soldiers as donors, in preparation for the anticipated Third Battle of Ypres. He used sodium citrate as the anticoagulant, and the blood was extracted from punctures in the vein, and was stored in bottles at British and American Casualty Clearing Stations along the Front. He also experimented with preserving separated red blood cells in iced bottles. Geoffrey Keynes, a British surgeon, developed a portable machine that could store blood to enable transfusions to be carried out more easily.

Expansion

The world's first blood donor service was established in 1921 by the secretary of the British Red Cross, Percy Lane Oliver. Volunteers were subjected to a series of physical tests to establish their blood group. The London Blood Transfusion Service was free of charge and expanded rapidly. By 1925, it was providing services for almost 500 patients and it was incorporated into the structure of the British Red Cross in 1926. Similar systems were established in other cities including Sheffield, Manchester and Norwich, and the service's work began to attract international attention. Similar services were established in France, Germany, Austria, Belgium, Australia and Japan.
Vladimir Shamov and Sergei Yudin in the Soviet Union pioneered the transfusion of cadaveric blood from recently deceased donors. Yudin performed such a transfusion successfully for the first time on March 23, 1930, and reported his first seven clinical transfusions with cadaveric blood at the Fourth Congress of Ukrainian Surgeons at Kharkiv in September. Also in 1930, Yudin organized the world's first blood bank at the Nikolay Sklifosovsky Institute, which set an example for the establishment of further blood banks in different regions of the Soviet Union and in other countries. By the mid-1930s the Soviet Union had set up a system of at least 65 large blood centers and more than 500 subsidiary ones, all storing "canned" blood and shipping it to all corners of the country.
One of the earliest blood banks was established by Frederic Durán-Jordà during the Spanish Civil War in 1936. Duran joined the Transfusion Service at the Barcelona Hospital at the start of the conflict, but the hospital was soon overwhelmed by the demand for blood and the paucity of available donors. With support from the Department of Health of the Spanish Republican Army, Duran established a blood bank for the use of wounded soldiers and civilians. The 300–400 ml of extracted blood was mixed with 10% citrate solution in a modified Duran Erlenmeyer flask. The blood was stored in a sterile glass enclosed under pressure at 2 °C. During 30 months of work, the Transfusion Service of Barcelona registered almost 30,000 donors, and processed 9,000 liters of blood.
In 1937 Bernard Fantus, director of therapeutics at the Cook County Hospital in Chicago, established one of the first hospital blood banks in the United States. In creating a hospital laboratory that preserved, refrigerated and stored donor blood, Fantus originated the term "blood bank". Within a few years, hospital and community blood banks were established across the United States.
Frederic Durán-Jordà fled to Britain in 1938, and worked with Janet Vaughan at the Royal Postgraduate Medical School at Hammersmith Hospital to create a system of national blood banks in London. With the outbreak of war looking imminent in 1938, the War Office created the Army Blood Supply Depot in Bristol headed by Lionel Whitby and in control of four large blood depots around the country. British policy through the war was to supply military personnel with blood from centralized depots, in contrast to the approach taken by the Americans and Germans where troops at the front were bled to provide required blood. The British method proved to be more successful at adequately meeting all requirements and over 700,000 donors were bled over the course of the war. This system evolved into the National Blood Transfusion Service established in 1946, the first national service to be implemented.