GABAA receptor


The GABAA receptor is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid, the major inhibitory neurotransmitter in the central nervous system. Accurate regulation of GABAergic transmission through appropriate developmental processes, specificity to neural cell types, and responsiveness to activity is crucial for the proper functioning of nearly all aspects of the central nervous system.
Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions and, to a lesser extent, bicarbonate ions.
GABAAR are members of the ligand-gated ion channel receptor superfamily, which is a chloride channel family with a dozen or more heterotetrametric subtypes and 19 distinct subunits. These subtypes have distinct brain regional and subcellular localization, age-dependent expression, and the ability to undergo plastic alterations in response to experience, including drug exposure.
GABAAR is not just the target of agonist depressants and antagonist convulsants, but most GABAAR medicines also act at additional binding sites on GABAAR proteins. Some sedatives and anxiolytics, such as benzodiazepines and related medicines, act on GABAAR subtype-dependent extracellular domain sites. Alcohols and neurosteroids, among other general anesthetics, act at GABAAR subunit-interface transmembrane locations. High anesthetic dosages of ethanol act on GABAAR subtype-dependent transmembrane domain locations. Ethanol acts at GABAAR subtype-dependent extracellular domain locations at low intoxication concentrations. Thus, GABAAR subtypes have pharmacologically distinct receptor binding sites for a diverse range of therapeutically significant neuropharmacological drugs.
Depending on the membrane potential and the ionic concentration difference, this can result in ionic fluxes across the pore. If the membrane potential is higher than the equilibrium potential for chloride ions, when the receptor is activated will flow into the cell. This causes an inhibitory effect on neurotransmission by diminishing the chance of a successful action potential occurring at the postsynaptic cell. The reversal potential of the GABAA-mediated inhibitory postsynaptic potential in normal solution is −70 mV, contrasting the GABAB IPSP.
The active site of the GABAA receptor is the binding site for GABA and several drugs such as muscimol, gaboxadol, and bicuculline. The protein also contains a number of different allosteric binding sites which modulate the activity of the receptor indirectly. These allosteric sites are the targets of various other drugs, including the benzodiazepines, nonbenzodiazepines, neuroactive steroids, barbiturates, alcohol, inhaled anaesthetics, kavalactones, cicutoxin, and picrotoxin, among others.
Binding of GABA to the GABAAR causes the receptor to shift from ordered lipids to clusters of PIP2 in the disordered region of the membrane. The spatial distribution of GABAAR in neurons is regulated by astrocyte derived cholesterol.
Much like the GABAA receptor, the GABAB receptor is an obligatory heterodimer consisting of GABAB1 and GABAB2 subunits. These subunits include an extracellular Venus Flytrap domain and a transmembrane domain containing seven α-helices. These structural components play a vital role in intricately modulating neurotransmission and interactions with drugs.

Target for benzodiazepines

The ionotropic GABAA receptor protein complex is also the molecular target of the benzodiazepine class of tranquilizer drugs. Benzodiazepines do not bind to the same receptor site on the protein complex as does the endogenous ligand GABA, but bind to distinct benzodiazepine binding sites situated at the interface between the α- and γ-subunits of α- and γ-subunit containing GABAA receptors. While the majority of GABAA receptors are benzodiazepine sensitive, there exists a minority of GABAA receptors which are insensitive to classical 1,4-benzodiazepines, but instead are sensitive to other classes of GABAergic drugs such as neurosteroids and alcohol. In addition peripheral benzodiazepine receptors exist which are not associated with GABAA receptors. As a result, the IUPHAR has recommended that the terms "BZ receptor", "GABA/BZ receptor" and "omega receptor" no longer be used and that the term "benzodiazepine receptor" be replaced with "benzodiazepine site". Benzodiazepines like diazepam and midazolam act as positive allosteric modulators for GABAA receptors. When these receptors are activated, there's a rise in intracellular chloride levels, resulting in cell membrane hyperpolarization and decreased excitation.
In order for GABAA receptors to be sensitive to the action of benzodiazepines they need to contain an α and a γ subunit, between which the benzodiazepine binds. Once bound, the benzodiazepine locks the GABAA receptor into a conformation where the neurotransmitter GABA has much higher affinity for the GABAA receptor, increasing the frequency of opening of the associated chloride ion channel and hyperpolarising the membrane. This potentiates the inhibitory effect of the available GABA leading to sedative and anxiolytic effects.
Different benzodiazepines have different affinities for GABAA receptors made up of different collection of subunits, and this means that their pharmacological profile varies with subtype selectivity. For instance, benzodiazepine receptor ligands with high activity at the α1 and/or α5 tend to be more associated with sedation, ataxia and amnesia, whereas those with higher activity at GABAA receptors containing α2 and/or α3 subunits generally have greater anxiolytic activity. Anticonvulsant effects can be produced by agonists acting at any of the GABAA subtypes, but current research in this area is focused mainly on producing α2-selective agonists as anticonvulsants which lack the side effects of older drugs such as sedation and amnesia.
The binding site for benzodiazepines is distinct from the binding site for barbiturates and GABA on the GABAA receptor, and also produces different effects on binding, with the benzodiazepines increasing the frequency of the chloride channel opening, while barbiturates increase the duration of chloride channel opening when GABA is bound. Since these are separate modulatory effects, they can both take place at the same time, and so the combination of benzodiazepines with barbiturates is strongly synergistic, and can be dangerous if dosage is not strictly controlled.
Also note that some GABAA agonists such as muscimol and gaboxadol do bind to the same site on the GABAA receptor complex as GABA itself, and consequently produce effects which are similar but not identical to those of positive allosteric modulators like benzodiazepines.

Structure and function

Structural understanding of the GABAA receptor was initially based on homology models, obtained using crystal structures of homologous proteins like Acetylcholine binding protein and nicotinic acetylcholine receptors as templates. The much sought structure of a GABAA receptor was finally resolved, with the disclosure of the crystal structure of human β3 homopentameric GABAA receptor.
Whilst this was a major development, the majority of GABAA receptors are heteromeric and the structure did not provide any details of the benzodiazepine binding site. This was finally elucidated in 2018 by the publication of a high resolution cryo-EM structure of rat α1β1γ2S receptor and human α1β2γ2 receptor bound with GABA and the neutral benzodiazepine flumazenil.
GABAA receptors are pentameric transmembrane receptors which consist of five subunits arranged around a central pore. Each subunit comprises four transmembrane domains with both the N- and C-terminus located extracellularly. The receptor sits in the membrane of its neuron, usually localized at a synapse, postsynaptically. However, some isoforms may be found extrasynaptically. When vesicles of GABA are released presynaptically and activate the GABA receptors at the synapse, this is known as phasic inhibition. However, the GABA escaping from the synaptic cleft can activate receptors on presynaptic terminals or at neighbouring synapses on the same or adjacent neurons in addition to the constant, low GABA concentrations in the extracellular space results in persistent activation of the GABAA receptors known as tonic inhibition.
The ligand GABA is the endogenous compound that causes this receptor to open; once bound to GABA, the protein receptor changes conformation within the membrane, opening the pore in order to allow chloride anions and, to a lesser extent, bicarbonate ions to pass down their electrochemical gradient. The binding site to GABA is about 80Å away from the narrowest part of the ion channel. Recent computational studies have suggested an allosteric mechanism whereby GABA binding leads to ion channel opening. Because the reversal potential for chloride in most mature neurons is close to or more negative than the resting membrane potential, activation of GABAA receptors tends to stabilize or hyperpolarise the resting potential, and can make it more difficult for excitatory neurotransmitters to depolarize the neuron and generate an action potential. The net effect therefore typically inhibitory, reducing the activity of the neuron, although depolarizing currents have been observed in response to GABA in immature neurons in early development. This effect during development is due to a modified gradient wherein the anions leave the cells through the GABAA receptors, since their intracellular chlorine concentration is higher than the extracellular. The difference in extracellular chlorine anion concentration is presumed to be due to the higher activity of chloride transporters, such as NKCC1, transporting chloride into cells which are present early in development, whereas, for instance, KCC2 transports chloride out of cells and is the dominant factor in establishing the chloride gradient later in development. These depolarization events have shown to be key in neuronal development. In the mature neuron, the GABAA channel opens quickly and thus contributes to the early part of the inhibitory post-synaptic potential.
The endogenous ligand that binds to the benzodiazepine site is inosine.
Proper developmental, neuronal cell-type-specific, and activity-dependent GABAergic transmission control is required for nearly all aspects of CNS function.
It has been proposed that the GABAergic system is disrupted in numerous neurodevelopmental diseases, including Fragile X syndrome, Rett syndrome, and Dravet syndrome, and that it is a crucial potential target for therapeutic intervention.