Atan2
In computing and mathematics, the function atan2 is the 2-argument arctangent. By definition, is the angle measure between the positive -axis and the ray from the origin to the point in the Cartesian plane. Equivalently, is the argument of the complex number
The function first appeared in the programming language Fortran in 1961. It was originally intended to return a correct and unambiguous value for the angle in converting from Cartesian coordinates to polar coordinates. If and, then and
If, the desired angle measure is However, when, the angle is diametrically opposite the desired angle, and must be added to place the point in the correct quadrant. Using the function does away with this correction, simplifying code and mathematical formulas.
Motivation
The ordinary single-argument arctangent function only returns angle measures in the interval, and when invoking it to find the direction angle from the origin to an arbitrary point in the Cartesian plane, it will yield incorrect results when the point is in the left half-plane. Diametrically opposite angle measures have the same tangent becauseTo fully determine the direction angle from the origin given a point using the arctangent function, mathematical formulas or computer code must handle multiple cases; at least one for positive values of and one for negative values of, and sometimes additional cases when is negative or one coordinate is zero. Finding angle measures and converting Cartesian to polar coordinates are common in scientific computing, and this code is redundant and error-prone.
To save programmers the trouble, computer programming languages introduced the function, at least as early as the Fortran IV language of the 1960s. The quantity is the angle measure between the -axis and a ray from the origin to a point anywhere in the Cartesian plane. The signs of and are used to determine the quadrant of the result and select the correct branch of the multivalued function.
The function is useful in many applications involving Euclidean vectors, such as finding the direction from one point to another or converting a rotation matrix to Euler angles.
The function is now included in many other programming languages, and is also commonly found in mathematical formulas throughout science and engineering.
Argument order
In 1961, Fortran introduced the function with argument order so that the argument of a complex number is This follows the left-to-right order of a fraction written so that for positive values of However, this is the opposite of the conventional component order for complex numbers, or as coordinates See section [|Definition and computation].Some other programming languages picked the opposite order instead. For example, Microsoft Excel uses OpenOffice Calc uses and Mathematica uses defaulting to one-argument arctangent if called with one argument.
Definition and computation
The function computes the principal argument of the complex number, which is also the imaginary part of the principal value of the complex logarithm. That is,Adding any integer multiple of gives another argument of the same complex number, but the principal argument is defined as the unique representative angle in the interval.
In terms of the standard arctangent function, whose image is, can be expressed piecewise:
It can sometimes be convenient to describe the atan2 function in terms of the tangent of half the angle:
except in the case that and, when by convention atan2 is equal to. The expression with in the denominator should be used when and to avoid possible loss of significance in computing.
Derivative
As the function is a function of two variables, it has two partial derivatives. At points where these derivatives exist, is, except for a constant, equal to. Hence,These two partial derivatives are the coordinates of the gradient.
Informally representing the function as the angle function yields the following formula for the total differential:
While the function is discontinuous along the negative -axis, reflecting the fact that angle cannot be continuously defined, this derivative is continuously defined except at the origin, reflecting the fact that infinitesimal changes in angle can be defined everywhere except the origin. Integrating this derivative along a path gives the total change in angle over the path, and integrating over a closed loop gives the winding number.
In the language of differential geometry, this derivative is a one-form, and it is closed but not exact, and in fact it generates the first de Rham cohomology of the punctured plane. This is the most basic example of such a form, and it is fundamental in differential geometry.
The partial derivatives of do not contain trigonometric functions, making it particularly useful in many applications where trigonometric functions can be expensive to evaluate.
Illustrations
This figure shows values of atan2 along selected rays from the origin, labelled at the unit circle. The values, in radians, are shown inside the circle. The diagram uses the standard mathematical convention that angles increase counterclockwise from zero along the ray to the right. Note that the order of arguments is reversed; the function computes the angle corresponding to the point.This figure shows the values of along with for. Both functions are odd and periodic with periods and, respectively, and thus can easily be supplemented to any region of real values of. One can clearly see the branch cuts of the -function at, and of the -function at.
The two figures below show 3D views of respectively and over a region of the plane. Note that for, rays in the X/''Y-plane emanating from the origin have constant values, but for lines in the X''/Y-plane passing through the origin have constant values. For, the two diagrams give identical values.
Angle sum and difference identity
The sum or difference of multiple angles to be computed by can alternately be computed by composing them as complex numbers. Given two coordinate pairs and, their angles from the positive axis will be composed if they are treated as complex numbers and then multiplied together,. The resulting angle can be found using a single operation, so long as the as long as the resulting angle lies in :and likewise for more than two coordinate pairs. If the composed angle crosses the negative -axis, then the crossings can be counted and the appropriate integer multiple of added to the final result to correct it.
This difference formula is frequently used in practice to compute the angle between two planar vectors, since the resulting angle is always in the range.
East-counterclockwise, north-clockwise and south-clockwise conventions, etc.
The function was originally designed for the convention in pure mathematics that can be termed east-counterclockwise. In practical applications, however, the north-clockwise and south-clockwise conventions are often the norm. In atmospheric sciences, for instance, the wind direction can be calculated using the function with the east- and north-components of the wind vector as its arguments; the solar azimuth angle can be calculated similarly with the east- and north-components of the solar vector as its arguments. The wind direction is normally defined in the north-clockwise sense, and the solar azimuth angle uses both the north-clockwise and south-clockwise conventions widely. These different conventions can be realized by swapping the positions and changing the signs of the x- and y-arguments as follows:- .
Changing the sign of the x- and/or y-arguments and/or swapping their positions can create 8 possible variations of the function and they, interestingly, correspond to 8 possible definitions of the angle, namely, clockwise or counterclockwise starting from each of the 4 cardinal directions, north, east, south and west.
Realizations of the function in common computer languages
The realization of the function differs from one computer language to another:- In Microsoft Excel, OpenOffice.org Calc, LibreOffice Calc, Google Spreadsheets, and iWork Numbers, the 2-argument arctangent function has the two arguments in the standard sequence .
- In Mathematica, the form
ArcTanis used where the one parameter form supplies the normal arctangent. Mathematica classifiesArcTanas an indeterminate expression. - On most TI graphing calculators, the equivalent function is called R►Pθ and has the arguments.
- On TI-85 the function is called
angleand although it appears to take two arguments, it really only has one complex argument which is denoted by a pair of numbers:.
- The C function
atan2, and most other computer implementations, are designed to reduce the effort of transforming cartesian to polar coordinates and so always defineatan2. On implementations without signed zero, or when given positive zero arguments, it is normally defined as 0. It will always return a value in the range rather than raising an error or returning a NaN. - In Common Lisp, where optional arguments exist, the
atanfunction allows one to optionally supply the x coordinate:. - In Julia, the situation is similar to Common Lisp: instead of
atan2, the language has a one-parameter and a two-parameter form foratan. However, it has many more than two methods, to allow for aggressive optimisation at compile time. - Mathcad uses the argument order
atan2.atan2is undefined. - For systems implementing signed zero, infinities, or Not a Number, it is common to implement reasonable extensions that may extend the range of values produced to include − and −0 when = −0. These also may return NaN or raise an exception when given a NaN argument.
- In the Intel x86 Architecture assembler code,
atan2is known as theFPATANinstruction. It can deal with infinities and results lie in the closed interval, e.g.atan2= +/2 for finite x. Particularly,FPATANis defined when both arguments are zero: - :
atan2= +0; - :
atan2= +; - :
atan2= −0; - :
atan2= −. - In mathematical writings other than source code, such as in books and articles, the notations Arctan and Tan−1 have been utilized; these are capitalized variants of the regular arctan and tan−1. This usage is consistent with the complex argument notation, such that.
- On HP calculators, treat the coordinates as a complex number and then take the
ARG. Or<< C->R ARG >> 'ATAN2' STO. - On scientific calculators, the function can often be calculated as the angle given when is converted from rectangular coordinates to polar coordinates.
- Systems supporting symbolic mathematics normally return an undefined value for or otherwise signal that an abnormal condition has arisen.
- The free math library FDLIBM available from netlib has source code showing how it implements
atan2, including handling the various IEEE exceptional values. - For systems without a hardware multiplier, the function can be implemented in a numerically reliable manner by the CORDIC method. Thus, implementations of will probably choose to compute.