Astatine
Astatine is a chemical element; it has symbol At and atomic number 85. It is the rarest naturally occurring element in the Earth's crust, occurring only as the decay product of various heavier elements. All of astatine's isotopes are short-lived; the most stable is astatine-210, with a half-life of 8.1 hours. Consequently, a solid sample of the element has never been seen, because any macroscopic specimen would be immediately vaporized by the heat of its radioactivity.
The bulk properties of astatine are not known with certainty. Many of them have been estimated from its position on the periodic table as a heavier analog of fluorine, chlorine, bromine, and iodine, the four stable halogens. However, astatine also falls roughly along the dividing line between metals and nonmetals, and some metallic behavior has also been observed and predicted for it. Astatine is likely to have a dark or lustrous appearance and may be a semiconductor or possibly a metal. Chemically, several anionic species of astatine are known and most of its compounds resemble those of iodine, but it also sometimes displays metallic characteristics and shows some similarities to silver.
The first synthesis of astatine was in 1940 by Dale R. Corson, Kenneth Ross MacKenzie, and Emilio G. Segrè at the University of California, Berkeley. They named it from the Ancient Greek 'unstable'. Four isotopes of astatine were subsequently found to be naturally occurring, although much less than one gram is present at any given time in the Earth's crust. Neither the most stable isotope, astatine-210, nor the medically useful astatine-211 occur naturally; they are usually produced by bombarding bismuth-209 with alpha particles.
Characteristics
Astatine is an extremely radioactive element; all its isotopes have half-lives of 8.1 hours or less, decaying into other astatine isotopes, bismuth, polonium, or radon. Most of its isotopes are very unstable, with half-lives of seconds or less. Of the first 101 elements in the periodic table, only francium is less stable, and all the astatine isotopes more stable than the longest-lived francium isotopes are synthetic and do not occur in nature.The bulk properties of astatine are not known with any certainty. Research is limited by its short half-life, which prevents the creation of weighable quantities. A visible piece of astatine would immediately vaporize itself because of the heat generated by its intense radioactivity. It remains to be seen if, with sufficient cooling, a macroscopic quantity of astatine could be deposited as a thin film. Astatine is usually classified as either a nonmetal or a metalloid; metal formation has also been predicted.
Physical
Most of the physical properties of astatine have been estimated, using theoretically or empirically derived methods. For example, halogens get darker with increasing atomic weight – fluorine is nearly colorless, chlorine is yellow-green, bromine is red-brown, and iodine is dark gray/violet. Astatine is sometimes described as probably being a black solid, or as having a metallic appearance.Astatine sublimes less readily than iodine, having a lower vapor pressure. Even so, half of a given quantity of astatine will vaporize in approximately an hour if put on a clean glass surface at room temperature. The absorption spectrum of astatine in the middle ultraviolet region has lines at 224.401 and 216.225 nm, suggestive of 6p to 7s transitions.
The structure of solid astatine is unknown. As an analog of iodine it may have an orthorhombic crystalline structure composed of diatomic astatine molecules, and be a semiconductor. Alternatively, if condensed astatine forms a metallic phase, as has been predicted, it may have a monatomic face-centered cubic structure; in this structure, it may well be a superconductor, like the similar high-pressure phase of iodine. Metallic astatine is expected to have a density of 8.91–8.95 g/cm3.
Evidence for the existence of diatomic astatine is sparse and inconclusive. Some sources state that it does not exist, or at least has never been observed, while other sources assert or imply its existence. Despite this controversy, many properties of diatomic astatine have been predicted; for example, its bond length would be, dissociation energy <, and heat of vaporization 54.39 kJ/mol. Many values have been predicted for the melting and boiling points of astatine, but only for At2.
Chemical
The chemistry of astatine is "clouded by the extremely low concentrations at which astatine experiments have been conducted, and the possibility of reactions with impurities, walls and filters, or radioactivity by-products, and other unwanted nano-scale interactions". Many of its apparent chemical properties have been observed using tracer studies on extremely dilute astatine solutions, typically less than 10−10 mol·L−1. Some properties, such as anion formation, align with other halogens. Astatine has some metallic characteristics as well, such as plating onto a cathode, and coprecipitating with metal sulfides in hydrochloric acid. It forms complexes with EDTA, a metal chelating agent, and is capable of acting as a metal in antibody radiolabeling; in some respects, astatine in the +1 state is akin to silver in the same state. Most of the organic chemistry of astatine is, however, analogous to that of iodine. It has been suggested that astatine can form a stable monatomic cation in aqueous solution.Astatine has an electronegativity of 2.2 on the revised Pauling scale – lower than that of iodine and the same as hydrogen. In hydrogen astatide, the negative charge is predicted to be on the hydrogen atom, implying that this compound could be referred to as astatine hydride according to certain nomenclatures. That would be consistent with the electronegativity of astatine on the Allred–Rochow scale being less than that of hydrogen. However, official IUPAC stoichiometric nomenclature is based on an idealized convention of determining the relative electronegativities of the elements by the mere virtue of their position within the periodic table. According to this convention, astatine is handled as though it is more electronegative than hydrogen, irrespective of its true electronegativity. The electron affinity of astatine, at 233 kJ mol−1, is 21% less than that of iodine. In comparison, the value of Cl is 6.4% higher than F ; Br is 6.9% less than Cl; and I is 9.2% less than Br. The marked reduction for At was predicted as being due to spin–orbit interactions. The first ionization energy of astatine is about 899 kJ mol−1, which continues the trend of decreasing first ionization energies down the halogen group.
Compounds
Less reactive than iodine, astatine is the least reactive of the halogens; the chemical properties of tennessine, the next-heavier group 17 element, have not yet been investigated, however. Astatine compounds have been synthesized in nano-scale amounts and studied as intensively as possible before their radioactive disintegration. The reactions involved have been typically tested with dilute solutions of astatine mixed with larger amounts of iodine. Acting as a carrier, the iodine ensures there is sufficient material for laboratory techniques to work. Like iodine, astatine has been shown to adopt odd-numbered oxidation states ranging from −1 to +7.Only a few compounds with metals have been reported, in the form of astatides of sodium, palladium, silver, thallium, and lead. Some characteristic properties of silver and sodium astatide, and the other hypothetical alkali and alkaline earth astatides, have been estimated by extrapolation from other metal halides.
File:Hydrogen-astatide-calculated-3D-sf.svg|thumb|left|upright=0.6|Hydrogen astatide space-filling model
The formation of an astatine compound with hydrogen – usually referred to as hydrogen astatide – was noted by the pioneers of astatine chemistry. As mentioned, there are grounds for instead referring to this compound as astatine hydride. It is easily oxidized; acidification by dilute nitric acid gives the At0 or At+ forms, and the subsequent addition of silver may only partially, at best, precipitate astatine as silver astatide. Iodine, in contrast, is not oxidized, and precipitates readily as silver iodide.
Astatine is known to bind to boron, carbon, and nitrogen. Various boron cage compounds have been prepared with At–B bonds, these being more stable than At–C bonds. Astatine can replace a hydrogen atom in benzene to form astatobenzene C6H5At; this may be oxidized to C6H5AtCl2 by chlorine. By treating this compound with an alkaline solution of hypochlorite, C6H5AtO2 can be produced. The dipyridine-astatine cation, +, forms ionic compounds with perchlorate and with nitrate, NO3. This cation exists as a coordination complex in which two dative covalent bonds separately link the astatine centre with each of the pyridine rings via their nitrogen atoms.
With oxygen, there is evidence of the species AtO− and AtO+ in aqueous solution, formed by the reaction of astatine with an oxidant such as elemental bromine or by sodium persulfate in a solution of perchloric acid. The species previously thought to be has since been determined to be, a hydrolysis product of AtO+. The well characterized anion can be obtained by, for example, the oxidation of astatine with potassium hypochlorite in a solution of potassium hydroxide. Preparation of lanthanum triastatate La3, following the oxidation of astatine by a hot Na2S2O8 solution, has been reported. Further oxidation of, such as by xenon difluoride or periodate, yields the perastatate ion ; this is only stable in neutral or alkaline solutions. Astatine is also thought to be capable of forming cations in salts with oxyanions such as iodate or dichromate; this is based on the observation that, in acidic solutions, monovalent or intermediate positive states of astatine coprecipitate with the insoluble salts of metal cations such as silver iodate or thallium dichromate.
Astatine may form bonds to the other chalcogens; these include S7At+ and with sulfur, a coordination selenourea compound with selenium, and an astatine–tellurium colloid with tellurium.
File:Astatine-iodide-3D-vdW.svg|thumb|upright=0.9|Structure of astatine iodide, one of the astatine interhalogens and the heaviest known diatomic interhalogen
Astatine is known to react with its lighter homologs iodine, bromine, and chlorine in the vapor state; these reactions produce diatomic interhalogen compounds with formulas AtI, AtBr, and AtCl. The first two compounds may also be produced in water – astatine reacts with iodine/iodide solution to form AtI, whereas AtBr requires an iodine/iodine monobromide/bromide solution. The excess of iodides or bromides may lead to and ions, or in a chloride solution, they may produce species like or via equilibrium reactions with the chlorides. Oxidation of the element with dichromate showed that adding chloride turned the astatine into a molecule likely to be either AtCl or AtOCl. Similarly, or may be produced. The polyhalides PdAtI2, CsAtI2, TlAtI2, and PbAtI are known or presumed to have been precipitated. In a plasma ion source mass spectrometer, the ions +, +, and + have been formed by introducing lighter halogen vapors into a helium-filled cell containing astatine, supporting the existence of stable neutral molecules in the plasma ion state. No astatine fluorides have been discovered yet. Their absence has been speculatively attributed to the extreme reactivity of such compounds, including the reaction of an initially formed fluoride with the walls of the glass container to form a non-volatile product. Thus, although the synthesis of an astatine fluoride is thought to be possible, it may require a liquid halogen fluoride solvent, as has already been used for the characterization of radon fluoride.