Anti-reflective coating


An anti-reflective, anti-glare or anti-reflection 'coating' is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on eyeglass lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's binoculars or telescopic sight.
Many coatings consist of transparent thin film structures with alternating layers of contrasting refractive index. Layer thicknesses are chosen to produce destructive interference in the beams reflected from the interfaces, and constructive interference in the corresponding transmitted beams. This makes the structure's performance change with wavelength and incident angle, so that color effects often appear at oblique angles. A wavelength range must be specified when designing or ordering such coatings, but good performance can often be achieved for a relatively wide range of frequencies: usually a choice of IR, visible, or UV is offered.

Applications

Anti-reflective coatings are used in a wide variety of applications where light passes through an optical surface, and low loss or low reflection is desired. Examples include anti-glare coatings on corrective lenses and camera lens elements, and antireflective coatings on solar cells.

Corrective lenses

s may recommend "anti-reflection lenses" because the decreased reflection enhances the cosmetic appearance of the lenses. Such lenses are often said to reduce glare, but the reduction is very slight. Eliminating reflections allows slightly more light to pass through, producing a slight increase in contrast and visual acuity.
Antireflective ophthalmic lenses should not be confused with polarized lenses, which are found only in sunglasses and decrease the visible glare of sun reflected off surfaces such as sand, water, and roads. The term "antireflective" relates to the reflection from the surface of the lens itself, not the origin of the light that reaches the lens.
Many anti-reflection lenses include an additional coating that repels water and grease, making them easier to keep clean. Anti-reflection coatings are particularly suited to high-index lenses, as these reflect more light without the coating than a lower-index lens. It is also generally easier and cheaper to coat high index lenses.

Photolithography

Antireflective coatings are often used in microelectronic photolithography to help reduce image distortions associated with reflections off the surface of the substrate. Different types of antireflective coatings are applied either before or after the photoresist, and help reduce standing waves, thin-film interference, and specular reflections.

Solar cells

s are often coated with an anti-reflective coating. Materials that have been used include magnesium fluoride, silicon nitride, silicon dioxide, titanium dioxide, and aluminum oxide.

Types

Index-matching

The simplest form of anti-reflective coating was discovered by Lord Rayleigh in 1886. The optical glass available at the time tended to develop a tarnish on its surface with age, due to chemical reactions with the environment. Rayleigh tested some old, slightly tarnished pieces of glass, and found to his surprise that they transmitted more light than new, clean pieces. The tarnish replaces the air-glass interface with two interfaces: an air-tarnish interface and a tarnish-glass interface. Because the tarnish has a refractive index between those of glass and air, each of these interfaces exhibits less reflection than the air-glass interface did. In fact, the total of the two reflections is less than that of the "naked" air-glass interface, as can be calculated from the Fresnel equations.
One approach is to use graded-index anti-reflective coatings, that is, ones with nearly continuously varying indices of refraction. With these, it is possible to curtail reflection for a broad band of frequencies and incidence angles.

Single-layer interference

The simplest interference anti-reflective coating consists of a single thin layer of transparent material with refractive index equal to the square root of the substrate's refractive index. In air, such a coating theoretically gives zero reflectance for light with wavelength equal to four times the coating's thickness. Reflectance is also decreased for wavelengths in a broad band around the center. A layer of thickness equal to a quarter of some design wavelength is called a "quarter-wave layer".
The most common type of optical glass is crown glass, which has an index of refraction of about 1.52. An optimal single-layer coating would have to be made of a material with an index of about 1.23. There are no solid materials with such a low refractive index. The closest materials with good physical properties for a coating are magnesium fluoride, MgF2, and fluoropolymers, which can have indices as low as 1.30, but are more difficult to apply. MgF2 on a crown glass surface gives a reflectance of about 1%, compared to 4% for bare glass. MgF2 coatings perform much better on higher-index glasses, especially those with index of refraction close to 1.9. MgF2 coatings are commonly used because they are cheap and durable. When the coatings are designed for a wavelength in the middle of the visible band, they give reasonably good anti-reflection over the entire band.
Researchers have produced films of mesoporous silica nanoparticles with refractive indices as low as 1.12, which function as antireflection coatings.

Multi-layer interference

By using alternating layers of a low-index material like silica and a higher-index material, it is possible to obtain reflectivities as low as 0.1% at a single wavelength. Coatings that give very low reflectivity over a broad band of frequencies can also be made, although these are complex and relatively expensive. Optical coatings can also be made with special characteristics, such as near-zero reflectance at multiple wavelengths, or optimal performance at angles of incidence other than 0°.

Absorbing

An additional category of anti-reflection coatings is the so-called "absorbing ARC". These coatings are useful in situations where high transmission through a surface is unimportant or undesirable, but low reflectivity is required. They can produce very low reflectance with few layers, and can often be produced more cheaply, or at greater scale, than standard non-absorbing AR coatings. Absorbing ARCs often make use of unusual optical properties exhibited in compound thin films produced by sputter deposition. For example, titanium nitride and niobium nitride are used in absorbing ARCs. These can be useful in applications requiring contrast enhancement or as a replacement for tinted glass.

Moth eye

s' eyes have an unusual property: their surfaces are covered with a natural nanostructured film, which eliminates reflections. This allows the moth to see well in the dark, without reflections to give its location away to predators. The structure consists of a hexagonal pattern of bumps, each roughly 200 nm high and spaced on 300 nm centers. This kind of antireflective coating works because the bumps are smaller than the wavelength of visible light, so the light sees the surface as having a continuous refractive index gradient between the air and the medium, which decreases reflection by effectively removing the air-lens interface. Practical anti-reflective films have been made by humans using this effect; this is a form of biomimicry. Canon uses the moth-eye technique in their SWC subwavelength structure coating, which significantly reduces lens flare.
Such structures are also used in photonic devices, for example, moth-eye structures grown from tungsten oxide and iron oxide can be used as photoelectrodes for splitting water to produce hydrogen. The structure consists of tungsten oxide spheroids several hundred micrometers in diameter, coated with a few nanometers of iron oxide.

Circular polarizer

A circular polarizer laminated to a surface can be used to eliminate reflections. The polarizer transmits light with one chirality of circular polarization. Light reflected from the surface after the polarizer is transformed into the opposite "handedness". This light cannot pass back through the circular polarizer because its chirality has changed. A disadvantage of this method is that if the input light is unpolarized, the transmission through the assembly will be less than 50%.

Theory

There are two separate causes of optical effects due to coatings, often called thick-film and thin-film effects. Thick-film effects arise because of the difference in the index of refraction between the layers above and below the coating ; in the simplest case, these three layers are the air, the coating, and the glass. Thick-film coatings do not depend on how thick the coating is, so long as the coating is much thicker than a wavelength of light. Thin-film effects arise when the thickness of the coating is approximately the same as a quarter or a half a wavelength of light. In this case, the reflections of a steady source of light can be made to add destructively and hence reduce reflections by a separate mechanism. In addition to depending very much on the thickness of the film and the wavelength of light, thin-film coatings depend on the angle at which the light strikes the coated surface.