Animal cognition


Animal cognition encompasses the mental capacities of non-human animals, including insect cognition. The study of animal conditioning and learning used in this field was developed from comparative psychology. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology; the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.
Researchers have examined animal cognition in mammals, birds, reptiles, fish and invertebrates.

Historical background

Earliest inferences

The mind and behavior of non-human animals has captivated the human imagination for centuries. Many writers, such as Descartes, have speculated about the presence or absence of the animal mind. These speculations led to many observations of animal behavior before modern science and testing were available. This ultimately resulted in the creation of multiple hypotheses about animal intelligence.
One of Aesop's Fables was The Crow and the Pitcher, in which a crow drops pebbles into a vessel of water until he is able to drink. This was a relatively accurate reflection of the capability of corvids to understand water displacement. The Roman naturalist Pliny the Elder was the earliest to attest that said story reflects the behavior of real-life corvids.
Aristotle, in his biology, hypothesized a causal chain where an animal's sense organs transmitted information to an organ capable of making decisions, and then to a motor organ. Despite Aristotle's cardiocentrism, this approached some modern understandings of information processing.
Early inferences were not necessarily precise or accurate. Nonetheless, interest in animal mental abilities, and comparisons to humans, increased with early myrmecology, the study of ant behavior, as well as the classification of humans as primates beginning with Linnaeus.

Morgan's Canon

Coined by 19th-century British psychologist C. Lloyd Morgan, Morgan's Canon remains a fundamental precept of comparative psychology. In its developed form, it states that:
In no case is an animal activity to be interpreted in terms of higher psychological processes if it can be fairly interpreted in terms of processes which stand lower in the scale of psychological evolution and development.

In other words, Morgan believed that anthropomorphic approaches to animal behavior were fallacious, and that people should only consider behaviour as, for example, rational, purposive or affectionate, if there is no other explanation in terms of the behaviours of more primitive life-forms to which we do not attribute those faculties.

From anecdote to laboratory

Speculation about animal intelligence gradually yielded to scientific study after Darwin placed humans and animals on a continuum, although Darwin's largely anecdotal approach to the cognition topic would not pass scientific muster later on. This method would be expanded by his protégé George J. Romanes, who played a key role in the defense of Darwinism and its refinement over the years. Still, Romanes is most famous for two major flaws in his work: his focus on anecdotal observations and entrenched anthropomorphism. Unsatisfied with the previous approach, E. L. Thorndike brought animal behavior into the laboratory for objective scrutiny. Thorndike's careful observations of the escape of cats, dogs, and chicks from puzzle boxes led him to conclude that what appears to the naive human observer to be intelligent behavior may be strictly attributable to simple associations. According to Thorndike, using Morgan's Canon, the inference of animal reason, insight, or consciousness is unnecessary and misleading. At about the same time, I. P. Pavlov began his seminal studies of conditioned reflexes in dogs. Pavlov quickly abandoned attempts to infer canine mental processes; such attempts, he said, led only to disagreement and confusion. He was, however, willing to propose unseen physiological processes that might explain his observations.

The behavioristic half-century

The work of Thorndike, Pavlov and a little later of the outspoken behaviorist John B. Watson set the direction of much research on animal behavior for more than half a century. During this time there was considerable progress in understanding simple associations; notably, around 1930 the differences between Thorndike's instrumental conditioning and Pavlov's classical conditioning were clarified, first by Miller and Kanorski, and then by B. F. Skinner. Many experiments on conditioning followed; they generated some complex theories, but they made little or no reference to intervening mental processes. Probably the most explicit dismissal of the idea that mental processes control behavior was the radical behaviorism of Skinner. This view seeks to explain behavior, including "private events" like mental images, solely by reference to the environmental contingencies impinging on the human or animal.
Despite the predominantly behaviorist orientation of research before 1960, the rejection of mental processes in animals was not universal during those years. Influential exceptions included, for example, Wolfgang Köhler and his insightful chimpanzees and Edward Tolman whose proposed cognitive map was a significant contribution to subsequent cognitive research in both humans and animals.

The cognitive revolution

Beginning around 1960, a "cognitive revolution" in research on humans gradually spurred a similar transformation of research with animals. Inference to processes not directly observable became acceptable and then commonplace. An important proponent of this shift in thinking was Donald O. Hebb, who argued that "mind" is simply a name for processes in the head that control complex behavior, and that it is both necessary and possible to infer those processes from behavior. Animals came to be seen as "goal seeking agents that acquire, store, retrieve, and internally process information at many levels of cognitive complexity".

Methods

The acceleration of research on animal cognition in the last 50 years or so has led to a rapid expansion in the variety of species studied and methods employed. The remarkable behavior of large-brained animals such as primates and cetacea have claimed special attention, but all sorts of animals large and small have been brought into the laboratory or observed in carefully controlled field studies. In the laboratory, animals push levers, pull strings, dig for food, swim in water mazes, or respond to images on computer screens to get information for discrimination, attention, memory, and categorization experiments. Careful field studies explore memory for food caches, navigation by stars, communication, tool use, identification of conspecifics, and many other matters. Studies often focus on the behavior of animals in their natural environments and discuss the putative function of the behavior for the propagation and survival of the species. These developments reflect an increased cross-fertilization from related fields such as ethology and behavioral ecology. Contributions from behavioral neuroscience are beginning to clarify the physiological substrate of some inferred mental process.
Some researchers have made effective use of a Piagetian methodology, taking tasks which human children are known to master at different stages of development and investigating which of them can be performed by particular species. Others have been inspired by concerns for animal welfare and the management of domestic species; for example, Temple Grandin has harnessed her unique expertise in animal welfare and the ethical treatment of farm livestock to highlight underlying similarities between humans and other animals. From a methodological point of view, one of the main risks in this sort of work is anthropomorphism, the tendency to interpret an animal's behavior in terms of human feelings, thoughts, and motivations.

Research questions

Human and non-human animal cognition have much in common, and this is reflected in the research summarized below; most of the headings found here might also appear in an article on human cognition. Of course, research in the two also differs in important respects. Notably, much research with humans either studies or involves language, and much research with animals is related directly or indirectly to behaviors important to survival in natural settings. Following are summaries of some of the major areas of research in animal cognition.

Perception

Animals process information from eyes, ears, and other sensory organs to perceive the environment. Perceptual processes have been studied in many species, with results that are often similar to those in humans. Equally interesting are those perceptual processes that differ from, or go beyond those found in humans, such as echolocation in bats and dolphins, motion detection by skin receptors in fish, and extraordinary visual acuity, motion sensitivity and ability to see ultraviolet light in some birds.

Attention

Much of what is happening in the world at any moment is irrelevant to current behavior. Attention refers to mental processes that select relevant information, inhibit irrelevant information, and switch among these as the situation demands. Often the selective process is tuned before relevant information appears; such expectation makes for rapid selection of key stimuli when they become available. A large body of research has explored the way attention and expectation affect the behavior of non-human animals, and much of this work suggests that attention operates in birds, mammals and reptiles in much the same way that it does in humans.

Selective Learning

Animals trained to discriminate between two stimuli, say black versus white, can be said to attend to the "brightness dimension", but this says little about whether this dimension is selected in preference to others. More enlightenment comes from experiments that allow the animal to choose from several alternatives. For example, several studies have shown that performance is better on, for example, a color discrimination after the animal has learned another color discrimination than it is after training on a different dimension such as an X shape versus an O shape. The reverse effect happens after training on forms. Thus, the earlier learning appears to affect which dimension, color or form, the animal will attend to.
Other experiments have shown that after animals have learned to respond to one aspect of the environment responsiveness to other aspects is suppressed. In "blocking", for example, an animal is conditioned to respond to one stimulus by pairing that stimulus with reward or punishment. After the animal responds consistently to A, a second stimulus accompanies A on additional training trials. Later tests with the B stimulus alone elicit little response, suggesting that learning about B has been blocked by prior learning about A. This result supports the hypothesis that stimuli are neglected if they fail to provide new information. Thus, in the experiment just cited, the animal failed to attend to B because B added no information to that supplied by A. If true, this interpretation is an important insight into attentional processing, but this conclusion remains uncertain because blocking and several related phenomena can be explained by models of conditioning that do not invoke attention.