Intel 8086


The 8086 is a 16-bit microprocessor chip released by Intel on June 8, 1978 after development began in early 1976. It was followed by the Intel 8088 in 1979, which was a slightly modified chip with an external 8-bit data bus.
The 8086 gave rise to the x86 architecture, which eventually became Intel's most successful line of processors. On June 5, 2018, Intel released a limited-edition CPU celebrating the 40th anniversary of the Intel 8086, called the Intel Core i7-8086K.

History

Background

In 1972, Intel launched the 8008, Intel's first 8-bit microprocessor. It implemented an instruction set designed by Datapoint Corporation with programmable CRT terminals in mind, which also proved to be fairly general-purpose. The device needed several additional ICs to produce a functional computer, in part due to it being packaged in a small 18-pin "memory package", which ruled out the use of a separate address bus.
Two years later, Intel launched the 8080, employing the new 40-pin DIL packages originally developed for calculator ICs to enable a separate address bus. It had an extended instruction set that is source-compatible with the 8008 and also included some 16-bit instructions to make programming easier. The 8080 device was eventually replaced by the depletion-load-based 8085, which used a single +5 V power supply instead of the three different operating voltages of earlier chips. Other well known 8-bit microprocessors that emerged during these years are Motorola 6800, General Instrument PIC16X, MOS Technology 6502, Zilog Z80, and Motorola 6809.

The first x86 design

The 8086 project started in May 1976 and was originally intended as a temporary substitute for the ambitious and delayed iAPX 432 project. It was an attempt to draw attention from the less-delayed 16-bit and 32-bit processors of other manufacturers — Motorola, Zilog, and National Semiconductor.
While the 8086 was a 16-bit microprocessor, it used a similar architecture as Intel's 8-bit microprocessors. This allowed assembly language programs written in 8-bit to seamlessly migrate. New instructions and features — such as signed integers, base+offset addressing, and self-repeating operations — were added. Instructions were added to assist source code compilation of nested functions in the ALGOL-family of languages, including Pascal and PL/M. According to principal architect Stephen P. Morse, this was a result of a more software-centric approach. Other enhancements included microcode instructions for the multiply and divide assembly language instructions. Designers also anticipated coprocessors, such as 8087 and 8089, so the bus structure was designed to be flexible.
The first revision of the instruction set and high level architecture was ready after about three months, and as almost no CAD tools were used, four engineers and 12 layout people were simultaneously working on the chip. The 8086 took a little more than two years from idea to working product, which was considered fast for a complex design in the 1970s.
The 8086 was sequenced using a mixture of random logic and microcode and was implemented using depletion-load nMOS circuitry with approximately 20,000 active transistors. It was soon moved to a new refined nMOS manufacturing process called HMOS that Intel originally developed for manufacturing of fast static RAM products. This was followed by HMOS-II, HMOS-III versions, and, eventually, a fully static CMOS version for battery powered devices, manufactured using Intel's CHMOS processes. The original chip measured 33 mm² and minimum feature size was 3.2 μm. The MUL and DIV instructions were very slow due to being microcoded so x86 programmers usually just used the bit shift instructions for multiplying and dividing instead.
The 8086 was die-shrunk to 2 μm in 1981; this version also corrected a stack register bug in the original 3.5 μm chips. Later 1.5 μm and CMOS variants were outsourced to other manufacturers and not developed in-house.
The architecture was defined by Stephen P. Morse with some help from Bruce Ravenel in refining the final revisions. Logic designer Jim McKevitt and John Bayliss were the lead engineers of the hardware-level development team and Bill Pohlman the manager for the project. The legacy of the 8086 is enduring in the basic instruction set of today's personal computers and servers; the 8086 also lent its last two digits to later extended versions of the design, such as the Intel 286 and the Intel 386, all of which eventually became known as the x86 family. In addition, the PCI Vendor ID for system devices produced by Intel is 8086.

Details

Buses and operation

All internal registers, as well as internal and external data buses, are 16 bits wide, which firmly established the "16-bit microprocessor" identity of the 8086. A 20-bit external address bus provides a 1 MiB physical address space. This address space is addressed by means of internal memory "segmentation". The data bus is multiplexed with the address bus in order to fit all of the control lines into a standard 40-pin dual in-line package. It provides a 16-bit I/O address bus, supporting 64 KB of separate I/O space. The maximum linear address space is limited to 64 KB, simply because internal address/index registers are only 16 bits wide. Programming over 64 KB memory boundaries involves adjusting the segment registers ; this difficulty existed until the 80386 architecture introduced wider registers.

Hardware modes of 8086

Some of the control pins, which carry essential signals for all external operations, have more than one function depending upon whether the device is operated in min or max mode. The former mode is intended for small single-processor systems, while the latter is for medium or large systems using more than one processor. Maximum mode is required when using an 8087 or 8089 coprocessor. The voltage on pin 33 determines the mode. Changing the state of pin 33 changes the function of certain other pins, most of which have to do with how the CPU handles the bus. The mode is usually hardwired into the circuit and therefore cannot be changed by software. The workings of these modes are described in terms of timing diagrams in Intel datasheets and manuals. In minimum mode, all control signals are generated by the 8086 itself.

Registers and instruction

The 8086 has eight more-or-less general 16-bit registers. Four of them, AX, BX, CX, DX, can also be accessed as 8-bit register pairs while the other four, SI, DI, BP, SP, are 16-bit only.
Due to a compact encoding inspired by 8-bit processors, most instructions are one-address or two-address operations, which means that the result is stored in one of the operands. At most one of the operands can be in memory, but this memory operand can also be the destination, while the other operand, the source, can be either register or immediate. A single memory location can also often be used as both source and destination which, among other factors, further contributes to a code density comparable to most eight-bit machines at the time.
The degree of generality of most registers is much greater than in the 8080 or 8085. However, 8086 registers were more specialized than in most contemporary minicomputers and are also used implicitly by some instructions. While perfectly sensible for the assembly programmer, this makes register allocation for compilers more complicated compared to more orthogonal 16-bit and 32-bit processors of the time such as the PDP-11, VAX, 68000, 32016, etc. On the other hand, being more regular than the rather minimalistic but ubiquitous 8-bit microprocessors such as the 6502, 6800, 6809, 8085, MCS-48, 8051, and other contemporary accumulator-based machines, it is significantly easier to construct an efficient code generator for the 8086 architecture.
Another factor for this is that the 8086 also introduced some new instructions to better support stack-based high-level programming languages such as Pascal and PL/M; some of the more useful instructions are push mem-op, and ret size, supporting the "Pascal calling convention" directly.
A 64 KB stack growing towards lower addresses is supported in hardware; 16-bit words are pushed onto the stack, and the top of the stack is pointed to by SS:SP. There are 256 interrupts, which can be invoked by both hardware and software. The interrupts can cascade, using the stack to store the return addresses.
The 8086 has 64 K of 8-bit I/O port space.

Flags

The 8086 has a 16-bit flags register. Nine of these condition code flags are active, and indicate the current state of the processor: Carry flag, Parity flag, Auxiliary carry flag, Zero flag, Sign flag, Trap flag, Interrupt flag, Direction flag, and Overflow flag.
Also referred to as the status word, the layout of the flags register is as follows:

Segmentation

There are also four 16-bit segment registers that allow the 8086 CPU to access one megabyte of memory in an unusual way. Rather than concatenating the segment register with the address register, as in most processors whose address space exceeds their register size, the 8086 shifts the 16-bit segment four bits left before adding it to the 16-bit offset, therefore producing a 20-bit external address from the 32-bit segment:offset pair. As a result, any external address could be referred to by up to 212 = 4096 different segment:offset pairs.
Although considered complicated and cumbersome by many programmers, this scheme also has advantages; a small program can be loaded starting at a fixed offset in its own segment, avoiding the need for relocation, with at most 15 bytes of alignment waste.
Compilers for the 8086 family commonly support two types of pointer, near and far. Near pointers are 16-bit offsets implicitly associated with the program's code or data segment and so can be used only within parts of a program small enough to fit in one segment. Far pointers are 32-bit segment:offset pairs resolving to 20-bit external addresses. Some compilers also support huge pointers, which are like far pointers except that pointer arithmetic on a huge pointer treats it as a linear 20-bit pointer, while pointer arithmetic on a far pointer wraps around within its 16-bit offset without touching the segment part of the address.
To avoid the need to specify near and far on numerous pointers, data structures, and functions, compilers also support "memory models" which specify default pointer sizes. The tiny, small, compact, medium, large, and huge models cover practical combinations of near, far, and huge pointers for code and data. The tiny model means that code and data are shared in a single segment, just as in most 8-bit based processors, and can be used to build .com files for instance. Precompiled libraries often come in several versions compiled for different memory models.
According to Morse et al.,. the designers actually contemplated using an 8-bit shift, in order to create a 16 MB physical address space. However, as this would have forced segments to begin on 256-byte boundaries, and 1 MB was considered very large for a microprocessor around 1976, the idea was dismissed. Also, there were not enough pins available on a low cost 40-pin package for the additional four address bus pins.
In principle, the address space of the x86 series could have been extended in later processors by increasing the shift value, as long as applications obtained their segments from the operating system and did not make assumptions about the equivalence of different segment:offset pairs. In practice the use of "huge" pointers and similar mechanisms was widespread and the flat 32-bit addressing made possible with the 32-bit offset registers in the 80386 eventually extended the limited addressing range in a more general way.
The instruction stream is fetched from memory as words and is addressed internally by the processor to the byte level as necessary. An instruction stream queuing mechanism allows up to 6 bytes of the instruction stream to be queued while waiting for decoding and execution. The queue acts as a first-in-first-out buffer, from which the Execution Unit extracts instruction bytes as required. Whenever there is space for at least two bytes in the queue, the BIU will attempt a word fetch memory cycle. If the queue is empty, the first byte into the queue immediately becomes available to the EU.