G protein-coupled receptor
G protein-coupled receptors, also known as seven--transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors, form a large group of evolutionarily related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. They are coupled with G proteins. They pass through the cell membrane seven times in the form of six loops of amino acid residues, which is why they are sometimes referred to as seven-transmembrane receptors. Ligands can bind either to the extracellular N-terminus and loops or to the binding site within transmembrane helices. They are all activated by agonists, although a spontaneous auto-activation of an empty receptor has also been observed.
G protein-coupled receptors are found only in eukaryotes, including yeast, and choanoflagellates. The ligands that bind and activate these receptors include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters. They vary in size from small molecules to peptides, to large proteins. G protein-coupled receptors are involved in many diseases.
There are two principal signal transduction pathways involving the G protein-coupled receptors:
- the cAMP signal pathway and
- the phosphatidylinositol signal pathway.
GPCRs are an important drug target, and approximately 34% of all Food and Drug Administration approved drugs target 108 members of this family. The global sales volume for these drugs is estimated to be 180 billion US dollars as of 2018. It is estimated that GPCRs are targets for about 50% of drugs currently on the market, mainly due to their involvement in signaling pathways related to many diseases i.e. mental, metabolic including endocrinological disorders, immunological including viral infections, cardiovascular, inflammatory, senses disorders, and cancer. The long ago discovered association between GPCRs and many endogenous and exogenous substances, resulting in e.g. analgesia, is another dynamically developing field of the pharmaceutical research.
History and significance
With the determination of the first structure of the complex between a G-protein coupled receptor and a G-protein trimer in 2011 a new chapter of GPCR research was opened for structural investigations of global switches with more than one protein being investigated. The previous breakthroughs involved determination of the crystal structure of the first GPCR, rhodopsin, in 2000 and the crystal structure of the first GPCR with a diffusible ligand in 2007. The way in which the seven transmembrane helices of a GPCR are arranged into a bundle was suspected based on the low-resolution model of frog rhodopsin from cryogenic electron microscopy studies of the two-dimensional crystals. The crystal structure of rhodopsin, that came up three years later, was not a surprise apart from the presence of an additional cytoplasmic helix H8 and a precise location of a loop covering retinal binding site. However, it provided a scaffold which was hoped to be a universal template for homology modeling and drug design for other GPCRs – a notion that proved to be too optimistic.Results 7 years later were surprising because the crystallization of β2-adrenergic receptor with a diffusible ligand revealed quite a different shape of the receptor extracellular side than that of rhodopsin. This area is important because it is responsible for the ligand binding and is targeted by many drugs. Moreover, the ligand binding site was much more spacious than in the rhodopsin structure and was open to the exterior. In the other receptors crystallized shortly afterwards the binding side was even more easily accessible to the ligand. New structures complemented with biochemical investigations uncovered mechanisms of action of molecular switches which modulate the structure of the receptor leading to activation states for agonists or to complete or partial inactivation states for inverse agonists.
The 2012 Nobel Prize in Chemistry was awarded to Brian Kobilka and Robert Lefkowitz for their work that was "crucial for understanding how G protein-coupled receptors function". There have been at least seven other Nobel Prizes awarded for some aspect of G protein–mediated signaling. As of 2012, two of the top ten global best-selling drugs act by targeting G protein-coupled receptors.
Classification
The exact size of the GPCR superfamily is unknown, but at least 831 different human genes have been predicted to code for them from genome sequence analysis. Although numerous classification schemes have been proposed, the superfamily was classically divided into three main classes with no detectable shared sequence homology between classes.The largest class by far is class A, which accounts for nearly 85% of the GPCR genes. Of class A GPCRs, over half of these are predicted to encode olfactory receptors, while the remaining receptors are liganded by known endogenous compounds or are classified as orphan receptors. Despite the lack of sequence homology between classes, all GPCRs have a common structure and mechanism of signal transduction. The very large rhodopsin A group has been further subdivided into 19 subgroups.
According to the classical A-F system, GPCRs can be grouped into six classes based on sequence homology and functional similarity:
More recently, an alternative classification system called GRAFS has been proposed for vertebrate GPCRs. They correspond to classical classes C, A, B2, F, and B.
An early study based on available DNA sequence suggested that the human genome encodes roughly 750 G protein-coupled receptors, about 350 of which detect hormones, growth factors, and other endogenous ligands. Approximately 150 of the GPCRs found in the human genome have unknown functions.
Some web-servers and bioinformatics prediction methods have been used for predicting the classification of GPCRs according to their amino acid sequence alone, by means of the pseudo amino acid composition approach.
Physiological roles
GPCRs are involved in a wide variety of physiological processes. Some examples of their physiological roles include:- The visual sense: The opsins use a photoisomerization reaction to translate electromagnetic radiation into cellular signals. Rhodopsin, for example, uses the conversion of 11-cis-retinal to all-trans-retinal for this purpose.
- The gustatory sense : GPCRs in taste cells mediate release of gustducin in response to bitter-, umami- and sweet-tasting substances.
- The sense of smell: Receptors of the olfactory epithelium bind odorants and pheromones
- Behavioral and mood regulation: G protein-coupled receptors in the mammalian brain bind several different neurotransmitters, including serotonin, dopamine, histamine, noradrenaline, and GABA. Notable exceptions include GABAA receptor, 5-HT3 serotonin receptor and glutamate receptors, which are ion channels.
- Regulation of immune system activity and inflammation: chemokine receptors bind ligands that mediate intercellular communication between cells of the immune system; receptors such as histamine receptors bind inflammatory mediators and engage target cell types in the inflammatory response. GPCRs are also involved in immune-modulation, e. g. regulating interleukin induction or suppressing TLR-induced immune responses from T cells.
- Autonomic nervous system transmission: Both the sympathetic and parasympathetic nervous systems are regulated by GPCR pathways. The involved receptors include adrenergic receptors for the sympathetic nervous system and muscarinic acetylcholine receptors for the parasympathetic nervous system. Adrenergic receptor ligands are known to modulate blood pressure and heart rate, while muscarinic antagonists produce a host of symptoms such as pupil dilation, urinary retention, constipation and dry mouth that are directly related to inhibition of the parasympathetic nervous system.
- Cell density sensing: A novel GPCR role in regulating cell density sensing.
- Homeostasis modulation.
- Involved in growth and metastasis of some types of tumors.
- Used in the endocrine system for peptide and amino-acid derivative hormones that bind to GCPRs on the cell membrane of a target cell. This activates cAMP, which in turn activates several kinases, allowing for a cellular response, such as transcription.
Receptor structure
In 2000, the first crystal structure of a mammalian GPCR, that of bovine rhodopsin, was solved. In 2007, the first structure of a human GPCR was solved This human β2-adrenergic receptor GPCR structure proved highly similar to the bovine rhodopsin. The structures of activated or agonist-bound GPCRs have also been determined. These structures indicate how ligand binding at the extracellular side of a receptor leads to conformational changes in the cytoplasmic side of the receptor. The biggest change is an outward movement of the cytoplasmic part of the 5th and 6th transmembrane helix. The structure of activated beta-2 adrenergic receptor in complex with Gs confirmed that the Gα binds to a cavity created by this movement.
GPCRs exhibit a similar structure to some other proteins with seven transmembrane domains, such as microbial rhodopsins and adiponectin receptors 1 and 2. However, these 7TMH receptors and channels do not associate with G proteins. In addition, ADIPOR1 and ADIPOR2 are oriented oppositely to GPCRs in the membrane.